Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 1 Sayı: 2, 74 - 87, 31.08.2018

Öz

Kaynakça

  • {1} A.C.Cavalheiro, Existence and uniqueness ofsolutions for some degenerate nonlinear Dirichlet problems},Journal of Applied Analysis, 19 (2013), 41-54.
  • {2} M. Chipot, Elliptic Equations: An IntroductoryCourse, Birkh\"auser, Berlin (2009).
  • {3} P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations andSingularities, Walter de Gruyter, Berlin (1997).
  • {4} E. Fabes, C. Kenig, R. Serapioni, The localregularity of solutions of degenerate elliptic equations, Comm.PDEs 7 (1982), 77-116.
  • {5} J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-HollandMathematics Studies 116, (1985).
  • {6} D.Gilbarg and N.S. Trudinger, Elliptic PartialEquations of Second Order, 2nd Ed., Springer, New York (1983).
  • {7} J. Heinonen, T. Kilpelainen and O. Martio,\textit{Nonlinear Potential Theory of Degenerate EllipticEquations, Oxford Math. Monographs, Clarendon Press, (1993).
  • {8} B. Muckenhoupt, Weighted norm inequalities for theHardy maximal function, Trans. Am. Math. Soc. 165 (1972),207-226.
  • {9} E. Stein, Harmonic Analysis, PrincentonUniversity Press, New Jersey (1993).
  • {10} A. Torchinsky, Real-Variable Methods in HarmonicAnalysis, Academic Press, San Diego, (1986).
  • {11} B.O. Turesson, Nonlinear Potential Theory andWeighted Sobolev Spaces, Lecture Notes in Mathematics, vol. 1736,Springer-Verlag, (2000).
  • {12} E. Zeidler, Nonlinear Functional Analysis andits Applications, Vol.II/B, Springer-Verlag, New York (1990).

Existence results for Navier problems with degenerated (p,q)-Laplacian and (p,q)-Biharmonic operators

Yıl 2018, Cilt: 1 Sayı: 2, 74 - 87, 31.08.2018

Öz

In this article, we prove the existence and uniqueness of solutions for the Navier problem
(P)





ω(x)(|∆u|
p−2∆u + |∆u|
q−2∆u)

− div
ω(x)(|∇u|
p−2∇u + |∇u|
q−2∇u)

= f(x) − div(G(x)), in Ω,
u(x) = ∆u = 0, in ∂Ω,
where Ω is a bounded open set of R
N (N ≥ 2), f
ω
∈L
p
0
(Ω, ω) and G
ω
∈ [L
q
0
(Ω, ω)]N .

Kaynakça

  • {1} A.C.Cavalheiro, Existence and uniqueness ofsolutions for some degenerate nonlinear Dirichlet problems},Journal of Applied Analysis, 19 (2013), 41-54.
  • {2} M. Chipot, Elliptic Equations: An IntroductoryCourse, Birkh\"auser, Berlin (2009).
  • {3} P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations andSingularities, Walter de Gruyter, Berlin (1997).
  • {4} E. Fabes, C. Kenig, R. Serapioni, The localregularity of solutions of degenerate elliptic equations, Comm.PDEs 7 (1982), 77-116.
  • {5} J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-HollandMathematics Studies 116, (1985).
  • {6} D.Gilbarg and N.S. Trudinger, Elliptic PartialEquations of Second Order, 2nd Ed., Springer, New York (1983).
  • {7} J. Heinonen, T. Kilpelainen and O. Martio,\textit{Nonlinear Potential Theory of Degenerate EllipticEquations, Oxford Math. Monographs, Clarendon Press, (1993).
  • {8} B. Muckenhoupt, Weighted norm inequalities for theHardy maximal function, Trans. Am. Math. Soc. 165 (1972),207-226.
  • {9} E. Stein, Harmonic Analysis, PrincentonUniversity Press, New Jersey (1993).
  • {10} A. Torchinsky, Real-Variable Methods in HarmonicAnalysis, Academic Press, San Diego, (1986).
  • {11} B.O. Turesson, Nonlinear Potential Theory andWeighted Sobolev Spaces, Lecture Notes in Mathematics, vol. 1736,Springer-Verlag, (2000).
  • {12} E. Zeidler, Nonlinear Functional Analysis andits Applications, Vol.II/B, Springer-Verlag, New York (1990).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Albo Carlos Cavalheiro 0000-0003-1337-1292

Yayımlanma Tarihi 31 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Cavalheiro, A. C. (2018). Existence results for Navier problems with degenerated (p,q)-Laplacian and (p,q)-Biharmonic operators. Results in Nonlinear Analysis, 1(2), 74-87.
AMA Cavalheiro AC. Existence results for Navier problems with degenerated (p,q)-Laplacian and (p,q)-Biharmonic operators. RNA. Ağustos 2018;1(2):74-87.
Chicago Cavalheiro, Albo Carlos. “Existence Results for Navier Problems With Degenerated (p,q)-Laplacian and (p,q)-Biharmonic Operators”. Results in Nonlinear Analysis 1, sy. 2 (Ağustos 2018): 74-87.
EndNote Cavalheiro AC (01 Ağustos 2018) Existence results for Navier problems with degenerated (p,q)-Laplacian and (p,q)-Biharmonic operators. Results in Nonlinear Analysis 1 2 74–87.
IEEE A. C. Cavalheiro, “Existence results for Navier problems with degenerated (p,q)-Laplacian and (p,q)-Biharmonic operators”, RNA, c. 1, sy. 2, ss. 74–87, 2018.
ISNAD Cavalheiro, Albo Carlos. “Existence Results for Navier Problems With Degenerated (p,q)-Laplacian and (p,q)-Biharmonic Operators”. Results in Nonlinear Analysis 1/2 (Ağustos 2018), 74-87.
JAMA Cavalheiro AC. Existence results for Navier problems with degenerated (p,q)-Laplacian and (p,q)-Biharmonic operators. RNA. 2018;1:74–87.
MLA Cavalheiro, Albo Carlos. “Existence Results for Navier Problems With Degenerated (p,q)-Laplacian and (p,q)-Biharmonic Operators”. Results in Nonlinear Analysis, c. 1, sy. 2, 2018, ss. 74-87.
Vancouver Cavalheiro AC. Existence results for Navier problems with degenerated (p,q)-Laplacian and (p,q)-Biharmonic operators. RNA. 2018;1(2):74-87.