[1] J. A. Adam, N. Bellomo. A Survey of Models for Tumor-Immune System
Dynamics. Birkhauser, Boston, MA, 1996.
[2] E. J. Allen, L. J. S. Allen and A. Arciniega, P. Greenwood, Construction of
equivalent stochastic diferential equation models. Stoch. Anal. Appl., 26, pages:
274-297, 2008.
[3] L. J. S. Allen. An introduction to stochastic processes with applications to
biology. Second edition. CRC Press, Boca Raton, FL, 2011.
[4] N. Azevedo, D. Pinheiro and G.-W. Weber. Dynamic programming for
a Markov-switching jump-diffusion. Journal of Computational and Applied
Mathematics, 267, pages 1-19, 2014.
[5] C. G. Cassandras and John Lygeros. Stochastic Hybrid Systems, CRC Press,
FL, 2006.
[6] T. Dvorkin, X. Song, S. Argov, R. M. White, M. Zoller, S. Segal, C. A.
Dinarello, E. Voronov and R. N. Apte. Immune phenomena involved in the
in vivo regression of fibrosarcoma cells expressing cell-associated IL-1alpha. J
Leukoc Biol.; 80(1):96-106, 2006.
[7] N. Gökgöz. Development of Tools For Modeling Hybrid Systems With Memory,
Msc. Thesis, Scientific Computing, Institute of Applied Mathematics, Middle
East Technical University, Ankara, Turkey, 2008.
[8] N. Gökgöz. Modeling Stochastic Hybrid Systems With Memory With
an Application to Immune Response of Cancer Dynamics, PhD Thesis,
Scientific Computing, Institute of Applied Mathematics, Middle East Technical
University, Ankara, Turkey, 2014.
[9] N. Gökgöz. Stochastic Dynamics of tumor-immune system: a numerical
approach.Results in Nonlinear Analysis, pages 1-6, 2019.
[10] D. J. Higham and P. E. Kloeden. Numerical methods for nonlinear stochastic
dierential equations with jumps. Numerische Mathematik, Vol 101, No. 1, pp.
101-119, 2005.
[11] I. Karatzas and S. E. Shreve.Brownian Motion and Stochastic Calculus.
Springer, 1991.
[12] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson. Nonlinear
dynamics of immunogenic tumors: Parameter estimation and global bifurcations
analysis. Bull Math Biol., 56(2):295-321, 1994.
[13] X. Li, O. Omotere, L. Qian and E. R. Dougherty. Review of stochastic
hybrid systems with applications in biological systems modeling and analysis.
EURASIP Journal on Bioinformatics and Systems Biology, 2017. DOI
10.1186/s13637-017-0061-5
[14] B. Oksendal. Stochastic Differential Equations: An Introduction with
Applications. Springer-Verlag Berlin Heidelberg, 2003.
[15] H. Oktem. A survey on piecewise-linear models of regulatory dynamical
systems. Nonlinear Analysis, 63, 336-349,2005.
[16] H. Oktem, A. Hayfavi, N. Calışkan and N. Gökgöz. An Introduction of Hybrid
Systems with Memory, International Workshop on Hybrid Systems Modeling,
Simulation and Optimization, Koç University, Istanbul, May 14-16 2008.
[17] G. Pola, M. L. Bujorianu, J. Lygeros and M.D. Di Benedetto. Stochastic Hybrid
Models: An Overview. IFAC Proceedings Vol. 36, (pp. 4550), 2003.
[18] L. Preziosi. Cancer Modelling and Simulation. CRC Press, 2003.
[19] E. Savku, N. Azevedo and G.-W. Weber. Optimal Control of Stochastic
Hybrid Models in the Framework of Regime Switches. Modeling, Dynamics,
Optimization and Bioeconomics II, DGS III, Porto, Portugal, February 2014,
and Bioeconomy VII, Berkeley, USA, March 2014 - Selected Contributions,
pages 371-387, 2014.
[20] E. Savku and G. W. Weber. A Stochastic Maximum Principle for a Markov
Regime-Switching Jump-Diffusion Model with Delay and an Application to
Finance. J Optim Theory Appl, pages 696-721, 2017.
[21] A. M. Selçuk and H. Oktem. An improved method for inference of piecewise
linear systems by detecting jumps using derivative estimation. in: Nonlinear
Analysis: Hybrid Systems, 3:3 (277-287), 2009.
[22] B. Z. Temoçin and G. W. Weber. Optimal control of stochastic hybrid system
with jumps: A numerical approximation, Journal of Computational and Applied
Mathematics (JCAM) 259 (2014) 443-451, in special issue at the occasion of
ICACM - International Conference on Applied and Computational Mathematics
Ankara, Turkey, October 3-6, 2012.
[23] F. Yerlikaya- Ozkurt, C. Vardar-Acar, Y. Yolcu-Okur and G.-W. Weber.
Estimation of Hurst parameter of fractional Brownian motion using CMARS
method. Journal of Computational and Applied Mathematics (JCAM) 259
(2014) 843-850, in special issue at the occasion of ICACM - International
Conference on Applied and Computational Mathematics Ankara, Turkey,
October 3-6, 2012
Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach
In this paper, we address the well-known Tumor-Immune Model of Kuznetsov
et al., converting it into a stochastic form, and for simulation purposes we employ
Euler-Maruyama discretization process. Such a modeling, for being realistic in
biology and medicine, requires the implication of memory components. We also explain
how to calculate the state transition time and we elaborate on how to reduce
the system dynamics after the state transition. In fact, we establish and evaluate
Stochastic Kuznetsov et al. model, and we describe how to demonstrate the stability
of the numerical method, addressing tumor growth in spleen of mice. This work
ends with a conclusion and a prospective view at future research and application,
with special focus on medicine and neuroscience of tumor analysis and treatment.
[1] J. A. Adam, N. Bellomo. A Survey of Models for Tumor-Immune System
Dynamics. Birkhauser, Boston, MA, 1996.
[2] E. J. Allen, L. J. S. Allen and A. Arciniega, P. Greenwood, Construction of
equivalent stochastic diferential equation models. Stoch. Anal. Appl., 26, pages:
274-297, 2008.
[3] L. J. S. Allen. An introduction to stochastic processes with applications to
biology. Second edition. CRC Press, Boca Raton, FL, 2011.
[4] N. Azevedo, D. Pinheiro and G.-W. Weber. Dynamic programming for
a Markov-switching jump-diffusion. Journal of Computational and Applied
Mathematics, 267, pages 1-19, 2014.
[5] C. G. Cassandras and John Lygeros. Stochastic Hybrid Systems, CRC Press,
FL, 2006.
[6] T. Dvorkin, X. Song, S. Argov, R. M. White, M. Zoller, S. Segal, C. A.
Dinarello, E. Voronov and R. N. Apte. Immune phenomena involved in the
in vivo regression of fibrosarcoma cells expressing cell-associated IL-1alpha. J
Leukoc Biol.; 80(1):96-106, 2006.
[7] N. Gökgöz. Development of Tools For Modeling Hybrid Systems With Memory,
Msc. Thesis, Scientific Computing, Institute of Applied Mathematics, Middle
East Technical University, Ankara, Turkey, 2008.
[8] N. Gökgöz. Modeling Stochastic Hybrid Systems With Memory With
an Application to Immune Response of Cancer Dynamics, PhD Thesis,
Scientific Computing, Institute of Applied Mathematics, Middle East Technical
University, Ankara, Turkey, 2014.
[9] N. Gökgöz. Stochastic Dynamics of tumor-immune system: a numerical
approach.Results in Nonlinear Analysis, pages 1-6, 2019.
[10] D. J. Higham and P. E. Kloeden. Numerical methods for nonlinear stochastic
dierential equations with jumps. Numerische Mathematik, Vol 101, No. 1, pp.
101-119, 2005.
[11] I. Karatzas and S. E. Shreve.Brownian Motion and Stochastic Calculus.
Springer, 1991.
[12] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson. Nonlinear
dynamics of immunogenic tumors: Parameter estimation and global bifurcations
analysis. Bull Math Biol., 56(2):295-321, 1994.
[13] X. Li, O. Omotere, L. Qian and E. R. Dougherty. Review of stochastic
hybrid systems with applications in biological systems modeling and analysis.
EURASIP Journal on Bioinformatics and Systems Biology, 2017. DOI
10.1186/s13637-017-0061-5
[14] B. Oksendal. Stochastic Differential Equations: An Introduction with
Applications. Springer-Verlag Berlin Heidelberg, 2003.
[15] H. Oktem. A survey on piecewise-linear models of regulatory dynamical
systems. Nonlinear Analysis, 63, 336-349,2005.
[16] H. Oktem, A. Hayfavi, N. Calışkan and N. Gökgöz. An Introduction of Hybrid
Systems with Memory, International Workshop on Hybrid Systems Modeling,
Simulation and Optimization, Koç University, Istanbul, May 14-16 2008.
[17] G. Pola, M. L. Bujorianu, J. Lygeros and M.D. Di Benedetto. Stochastic Hybrid
Models: An Overview. IFAC Proceedings Vol. 36, (pp. 4550), 2003.
[18] L. Preziosi. Cancer Modelling and Simulation. CRC Press, 2003.
[19] E. Savku, N. Azevedo and G.-W. Weber. Optimal Control of Stochastic
Hybrid Models in the Framework of Regime Switches. Modeling, Dynamics,
Optimization and Bioeconomics II, DGS III, Porto, Portugal, February 2014,
and Bioeconomy VII, Berkeley, USA, March 2014 - Selected Contributions,
pages 371-387, 2014.
[20] E. Savku and G. W. Weber. A Stochastic Maximum Principle for a Markov
Regime-Switching Jump-Diffusion Model with Delay and an Application to
Finance. J Optim Theory Appl, pages 696-721, 2017.
[21] A. M. Selçuk and H. Oktem. An improved method for inference of piecewise
linear systems by detecting jumps using derivative estimation. in: Nonlinear
Analysis: Hybrid Systems, 3:3 (277-287), 2009.
[22] B. Z. Temoçin and G. W. Weber. Optimal control of stochastic hybrid system
with jumps: A numerical approximation, Journal of Computational and Applied
Mathematics (JCAM) 259 (2014) 443-451, in special issue at the occasion of
ICACM - International Conference on Applied and Computational Mathematics
Ankara, Turkey, October 3-6, 2012.
[23] F. Yerlikaya- Ozkurt, C. Vardar-Acar, Y. Yolcu-Okur and G.-W. Weber.
Estimation of Hurst parameter of fractional Brownian motion using CMARS
method. Journal of Computational and Applied Mathematics (JCAM) 259
(2014) 843-850, in special issue at the occasion of ICACM - International
Conference on Applied and Computational Mathematics Ankara, Turkey,
October 3-6, 2012
Gökgöz, N., Öktem, H., & Weber, G.-w. (2020). Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. Results in Nonlinear Analysis, 3(1), 24-34.
AMA
Gökgöz N, Öktem H, Weber Gw. Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. RNA. Mart 2020;3(1):24-34.
Chicago
Gökgöz, Nurgül, Hakan Öktem, ve Gerhard-wilhelm Weber. “Modeling of Tumor-Immune Nonlinear Stochastic Dynamics With Hybrid Systems With Memory Approach”. Results in Nonlinear Analysis 3, sy. 1 (Mart 2020): 24-34.
EndNote
Gökgöz N, Öktem H, Weber G-w (01 Mart 2020) Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. Results in Nonlinear Analysis 3 1 24–34.
IEEE
N. Gökgöz, H. Öktem, ve G.-w. Weber, “Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach”, RNA, c. 3, sy. 1, ss. 24–34, 2020.
ISNAD
Gökgöz, Nurgül vd. “Modeling of Tumor-Immune Nonlinear Stochastic Dynamics With Hybrid Systems With Memory Approach”. Results in Nonlinear Analysis 3/1 (Mart 2020), 24-34.
JAMA
Gökgöz N, Öktem H, Weber G-w. Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. RNA. 2020;3:24–34.
MLA
Gökgöz, Nurgül vd. “Modeling of Tumor-Immune Nonlinear Stochastic Dynamics With Hybrid Systems With Memory Approach”. Results in Nonlinear Analysis, c. 3, sy. 1, 2020, ss. 24-34.
Vancouver
Gökgöz N, Öktem H, Weber G-w. Modeling of Tumor-Immune Nonlinear Stochastic Dynamics with Hybrid Systems with Memory Approach. RNA. 2020;3(1):24-3.