Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 3, 117 - 127, 30.09.2020

Öz

Kaynakça

  • [1] N.K. Agbeko, On optimal averages, Acta Math. Hungar. 63(2)(1994), 133–147.
  • [2] N.K. Agbeko, On the structure of optimal measures and some of its applications, Publ. Math. Debrecen 46(1-2)(1995), 79–87.
  • [3] V.I. Bogachev, Measure Theory, vol 1, Springer-Verlag Berlin Heidelberg 2007.
  • [4] C. Caratheodory, Vorlesungen über reelle Funktionen, Amer. Math. Soc. 2004.
  • [5] L. Drewnowski, A representation theorem for maxitive measures, Indag. Math. (N.S.), 20(1)(2009), 43–47.
  • [6] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Inc., 1992. ISBN: 0-8493-7157-0
  • [7] D. Harte, Multifractals. Theory and Applications, Chapman and Hall / Crc, Boca Raton London New York Washington D.C, 2001. ISBN 1-58488-154-2
  • [8] A.N. Kolmogorov, and S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylack Press, Albany, N. Y. 1961.
  • [9] H. Lebesgue, Sur une generalistion de l’integrale definie, C.R. Acad.Sci. Paris 132(1901), 1025-1028.
  • [10] H. Lebesgue, Integrale, longueur, aire, Ann. Mat. Pura Appl. 7(1902), 231-359.
  • [11] J.C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City, 2011.
  • [12] N. Shilkret, Maxitive measure and integration, Indag. Math., 33(1971), 109-116.
  • [13] E.M. Taylor, Measure theory and integration, Graduate Studies in Mathematics, 76, 2006. ISBN: 13 978-0-8218-4180-8.

How to extend Carathéodory's theorem to lattice-valued functionals

Yıl 2020, Cilt: 3 Sayı: 3, 117 - 127, 30.09.2020

Öz

Substituting in the definition of outer measure the addition with the maximum (or the supremum, or the join) operation we obtain a new set function called retuo measure. It is proved that every retuo measure is an outer measure. We give necessary and sufficient conditions for a set function to be a retuo measure. Similarly as in the case of outer measure, we propose a way to construct retuo measures. We consider some theoretical applications for constructed pairs of outer and retuo measures in the image of the Hausdorff measure and dimension.

Kaynakça

  • [1] N.K. Agbeko, On optimal averages, Acta Math. Hungar. 63(2)(1994), 133–147.
  • [2] N.K. Agbeko, On the structure of optimal measures and some of its applications, Publ. Math. Debrecen 46(1-2)(1995), 79–87.
  • [3] V.I. Bogachev, Measure Theory, vol 1, Springer-Verlag Berlin Heidelberg 2007.
  • [4] C. Caratheodory, Vorlesungen über reelle Funktionen, Amer. Math. Soc. 2004.
  • [5] L. Drewnowski, A representation theorem for maxitive measures, Indag. Math. (N.S.), 20(1)(2009), 43–47.
  • [6] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Inc., 1992. ISBN: 0-8493-7157-0
  • [7] D. Harte, Multifractals. Theory and Applications, Chapman and Hall / Crc, Boca Raton London New York Washington D.C, 2001. ISBN 1-58488-154-2
  • [8] A.N. Kolmogorov, and S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylack Press, Albany, N. Y. 1961.
  • [9] H. Lebesgue, Sur une generalistion de l’integrale definie, C.R. Acad.Sci. Paris 132(1901), 1025-1028.
  • [10] H. Lebesgue, Integrale, longueur, aire, Ann. Mat. Pura Appl. 7(1902), 231-359.
  • [11] J.C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City, 2011.
  • [12] N. Shilkret, Maxitive measure and integration, Indag. Math., 33(1971), 109-116.
  • [13] E.M. Taylor, Measure theory and integration, Graduate Studies in Mathematics, 76, 2006. ISBN: 13 978-0-8218-4180-8.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Nutefe Kwami Agbeko

Yayımlanma Tarihi 30 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 3

Kaynak Göster

APA Agbeko, N. K. (2020). How to extend Carathéodory’s theorem to lattice-valued functionals. Results in Nonlinear Analysis, 3(3), 117-127.
AMA Agbeko NK. How to extend Carathéodory’s theorem to lattice-valued functionals. RNA. Eylül 2020;3(3):117-127.
Chicago Agbeko, Nutefe Kwami. “How to Extend Carathéodory’s Theorem to Lattice-Valued Functionals”. Results in Nonlinear Analysis 3, sy. 3 (Eylül 2020): 117-27.
EndNote Agbeko NK (01 Eylül 2020) How to extend Carathéodory’s theorem to lattice-valued functionals. Results in Nonlinear Analysis 3 3 117–127.
IEEE N. K. Agbeko, “How to extend Carathéodory’s theorem to lattice-valued functionals”, RNA, c. 3, sy. 3, ss. 117–127, 2020.
ISNAD Agbeko, Nutefe Kwami. “How to Extend Carathéodory’s Theorem to Lattice-Valued Functionals”. Results in Nonlinear Analysis 3/3 (Eylül 2020), 117-127.
JAMA Agbeko NK. How to extend Carathéodory’s theorem to lattice-valued functionals. RNA. 2020;3:117–127.
MLA Agbeko, Nutefe Kwami. “How to Extend Carathéodory’s Theorem to Lattice-Valued Functionals”. Results in Nonlinear Analysis, c. 3, sy. 3, 2020, ss. 117-2.
Vancouver Agbeko NK. How to extend Carathéodory’s theorem to lattice-valued functionals. RNA. 2020;3(3):117-2.