The purpose of this paper, is studying the existence and
nonexistence of positive solutions to a class of a following tripled
system of fractional differential equations.
\begin{eqnarray*} \left\{ \begin{array}{ll}
D^{\alpha}u(\zeta)+a(\zeta)f(\zeta,v(\zeta),\omega(\zeta))=0, \quad
\quad u(0)=0,\quad u(1)=\int_0^1\phi(\zeta)u(\zeta)d\zeta, \\ \\
D^{\beta}v(\zeta)+b(\zeta)g(\zeta,u(\zeta),\omega(\zeta))=0, \quad
\quad v(0)=0,\quad v(1)=\int_0^1\psi(\zeta)v(\zeta)d\zeta,\\ \\
D^{\gamma}\omega(\zeta)+c(\zeta)h(\zeta,u(\zeta),v(\zeta))=0,\quad
\quad \omega(0)=0,\quad
\omega(1)=\int_0^1\eta(\zeta)\omega(\zeta)d\zeta,\\ \end{array}
\right.\end{eqnarray*} \\ where $0\leq \zeta \leq 1$, $1<\alpha,
\beta, \gamma \leq 2$, $a,b,c\in C((0,1),[0,\infty))$, $ \phi, \psi,
\eta \in L^1[0,1]$ are nonnegative and $f,g,h\in
C([0,1]\times[0,\infty)\times[0,\infty),[0,\infty))$ and $D$ is the
standard Riemann-Liouville fractional derivative.\\
Also, we provide some examples to demonstrate the validity of our
results.
Tripled System fractional differential equation integral boundary conditions existence and nonexistence of positive solutions
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Articles |
Yazarlar | |
Yayımlanma Tarihi | 30 Eylül 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 4 Sayı: 3 |