Araştırma Makalesi
BibTex RIS Kaynak Göster

On the existence of mild solutions for totally nonlinear Caputo-Hadamard fractional differential equations

Yıl 2022, Cilt: 5 Sayı: 2, 161 - 168, 30.06.2022
https://doi.org/10.53006/rna.1023029

Öz

The existence of mild solutions of a totally nonlinear Caputo-Hadamard fractional differential equation is
investigated using the Krasnoselskii-Burton fixed point theorem and some results are presented. Two example
are given to illustrate our obtained results.

Kaynakça

  • [1] M. Adivar, Y.N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal of Qualitative Theory of Di?erential Equations 2009(1) (2009), 1-20.
  • [2] B. Ahmad, S.K. Ntouyas, Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral functional differential equations, Electronic Journal of Differential Equations 2017(36) (2017), 1-11.
  • [3] A. Ardjouni, Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional differential equations, Proyecciones 40(1) (2021), 139-152.
  • [4] A. Ardjouni, Asymptotic stability in Caputo-Hadamard fractional dynamic equations, Results in Nonlinear Analysis 4(2) (2021), 77-86.
  • [5] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Mathematics 4(4) (2019), 1101-1113.
  • [6] A. Ardjouni, A. Djoudi, Positive solutions for first-order nonlinear Caputo-Hadamard fractional relaxation differential equations, Kragujevac Journal of Mathematics 45(6) (2021), 897-908.
  • [7] A. Ardjouni, A. Djoudi, Initial-value problems for nonlinear hybrid implicit Caputo fractional differential equations, Malaya Journal of Matematik 7(2) (2019), 314-317.
  • [8] A. Ardjouni, A. Djoudi, Approximating solutions of nonlinear hybrid Caputo fractional integro-differential equations via Dhage iteration principle, Ural Mathematical Journal 5(1) 2019, 3-12.
  • [9] A. Ardjouni, A. Djoudi, Existence and uniqueness of positive solutions for first-order nonlinear Liouville-Caputo fractional differential equations, São Paulo J. Math. Sci. 14 (2020), 381-390.
  • [10] A. Ardjouni, A Djoudi, Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional di?erential equations, Results in Nonlinear Analysis 2(3) (2019) 136-142.
  • [11] A. Ardjouni, A. Lachouri, A. Djoudi, Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Open Journal of Mathematical Analysis 3(2) (2019), 106-111.
  • [12] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005) 495-505.
  • [13] Z.B. Bai, T.T. Qiu, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput. 215 (2009), 2761-2767.
  • [14] H. Boulares, A. Ardjouni, Y. Laskri, Positive solutions for nonlinear fractional differential equations, Positivity 21 (2017), 1201?1212.
  • [15] B. Bordj, A. Ardjouni, Periodic and asymptotically periodic solutions in nonlinear coupled Volterra integro-dynamic systems with in nite delay on time scales, Advances in the Theory of Nonlinear Analysis and its Applications 5(2) (2021) 180-192.
  • [16] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.
  • [17] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609-625.
  • [18] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via monotone iterative technique, Axioms 9(57) (2020), 55-67.
  • [19] C. Derbazi, Z. Baitiche, M. Feckan, Some new uniqueness and Ulam stability results for a class of multiterms fractional differential equations in the framework of generalized Caputo fractional derivative using the Φ-fractional Bielecki-type norm, Turk. J. Math. 45 (2021), 2307-2322.
  • [20] C. Derbazi, Z. Baitiche, A. Zada, Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-Caputo fractional derivative, International Journal of Nonlinear Sciences and Numerical Simulation, https://doi.org/10.1515/ijnsns-2020-0228.
  • [21] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 3 (2008), 1-11.
  • [22] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Ams- terdam 2006.
  • [23] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal. 74 (2011), 5975-5986.
  • [24] K.Q. Lan, W. Lin, Positive solutions of systems of Caputo fractional differential equations, Communications in Applied Analysis 17(1) (2013), 61-86.
  • [25] M. Matar, On existence of positive solution for initial value problem of nonlinear fractional differential equations of order 1 < α ≤ 2, Acta Math. Univ. Comenianae, LXXXIV(1) (2015), 51-57.
  • [26] K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
  • [27] S. Niyom, S.K. Ntouyas, S. Laoprasittichok, J. Tariboon, Boundary value problems with four orders of Riemann-Liouville fractional derivatives, Adv. Difference Equ., 2016(165) (2016), 1-14.
  • [28] S.K. Ntouyas, J. Tariboon, Fractional boundary value problems with multiple orders of fractional derivatives and integrals, Electronic Journal of Differential Equations, 2017(100) (2017), 1-18.
  • [29] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [30] C. Wang, R. Wang, S. Wang, C. Yang, Positive Solution of Singular Boundary Value Problem for a Nonlinear Fractional Differential Equation, Bound. Value Probl. 2011 (2011), Art ID 297026.
  • [31] C. Wang, H. Zhang, S. Wang, Positive solution of a nonlinear fractional differential equation involving Caputo derivative, Discrete Dynamics in Natural and Society 2012 (2012), Art ID425408.
  • [32] S. Zhang, Existence results of positive solutions to boundary value problem for fractional differential equation, Positivity, 13(3) (2009), 583-599.
  • [33] S. Zhang, The existence of a positive solution for a fractional di?erential equation, J. Math. Anal. Appl. 252 (2000), 804-812.
Yıl 2022, Cilt: 5 Sayı: 2, 161 - 168, 30.06.2022
https://doi.org/10.53006/rna.1023029

Öz

Kaynakça

  • [1] M. Adivar, Y.N. Raffoul, Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal of Qualitative Theory of Di?erential Equations 2009(1) (2009), 1-20.
  • [2] B. Ahmad, S.K. Ntouyas, Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral functional differential equations, Electronic Journal of Differential Equations 2017(36) (2017), 1-11.
  • [3] A. Ardjouni, Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional differential equations, Proyecciones 40(1) (2021), 139-152.
  • [4] A. Ardjouni, Asymptotic stability in Caputo-Hadamard fractional dynamic equations, Results in Nonlinear Analysis 4(2) (2021), 77-86.
  • [5] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Mathematics 4(4) (2019), 1101-1113.
  • [6] A. Ardjouni, A. Djoudi, Positive solutions for first-order nonlinear Caputo-Hadamard fractional relaxation differential equations, Kragujevac Journal of Mathematics 45(6) (2021), 897-908.
  • [7] A. Ardjouni, A. Djoudi, Initial-value problems for nonlinear hybrid implicit Caputo fractional differential equations, Malaya Journal of Matematik 7(2) (2019), 314-317.
  • [8] A. Ardjouni, A. Djoudi, Approximating solutions of nonlinear hybrid Caputo fractional integro-differential equations via Dhage iteration principle, Ural Mathematical Journal 5(1) 2019, 3-12.
  • [9] A. Ardjouni, A. Djoudi, Existence and uniqueness of positive solutions for first-order nonlinear Liouville-Caputo fractional differential equations, São Paulo J. Math. Sci. 14 (2020), 381-390.
  • [10] A. Ardjouni, A Djoudi, Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional di?erential equations, Results in Nonlinear Analysis 2(3) (2019) 136-142.
  • [11] A. Ardjouni, A. Lachouri, A. Djoudi, Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Open Journal of Mathematical Analysis 3(2) (2019), 106-111.
  • [12] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005) 495-505.
  • [13] Z.B. Bai, T.T. Qiu, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput. 215 (2009), 2761-2767.
  • [14] H. Boulares, A. Ardjouni, Y. Laskri, Positive solutions for nonlinear fractional differential equations, Positivity 21 (2017), 1201?1212.
  • [15] B. Bordj, A. Ardjouni, Periodic and asymptotically periodic solutions in nonlinear coupled Volterra integro-dynamic systems with in nite delay on time scales, Advances in the Theory of Nonlinear Analysis and its Applications 5(2) (2021) 180-192.
  • [16] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.
  • [17] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609-625.
  • [18] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via monotone iterative technique, Axioms 9(57) (2020), 55-67.
  • [19] C. Derbazi, Z. Baitiche, M. Feckan, Some new uniqueness and Ulam stability results for a class of multiterms fractional differential equations in the framework of generalized Caputo fractional derivative using the Φ-fractional Bielecki-type norm, Turk. J. Math. 45 (2021), 2307-2322.
  • [20] C. Derbazi, Z. Baitiche, A. Zada, Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-Caputo fractional derivative, International Journal of Nonlinear Sciences and Numerical Simulation, https://doi.org/10.1515/ijnsns-2020-0228.
  • [21] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 3 (2008), 1-11.
  • [22] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Ams- terdam 2006.
  • [23] C. Kou, H. Zhou, Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal. 74 (2011), 5975-5986.
  • [24] K.Q. Lan, W. Lin, Positive solutions of systems of Caputo fractional differential equations, Communications in Applied Analysis 17(1) (2013), 61-86.
  • [25] M. Matar, On existence of positive solution for initial value problem of nonlinear fractional differential equations of order 1 < α ≤ 2, Acta Math. Univ. Comenianae, LXXXIV(1) (2015), 51-57.
  • [26] K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
  • [27] S. Niyom, S.K. Ntouyas, S. Laoprasittichok, J. Tariboon, Boundary value problems with four orders of Riemann-Liouville fractional derivatives, Adv. Difference Equ., 2016(165) (2016), 1-14.
  • [28] S.K. Ntouyas, J. Tariboon, Fractional boundary value problems with multiple orders of fractional derivatives and integrals, Electronic Journal of Differential Equations, 2017(100) (2017), 1-18.
  • [29] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [30] C. Wang, R. Wang, S. Wang, C. Yang, Positive Solution of Singular Boundary Value Problem for a Nonlinear Fractional Differential Equation, Bound. Value Probl. 2011 (2011), Art ID 297026.
  • [31] C. Wang, H. Zhang, S. Wang, Positive solution of a nonlinear fractional differential equation involving Caputo derivative, Discrete Dynamics in Natural and Society 2012 (2012), Art ID425408.
  • [32] S. Zhang, Existence results of positive solutions to boundary value problem for fractional differential equation, Positivity, 13(3) (2009), 583-599.
  • [33] S. Zhang, The existence of a positive solution for a fractional di?erential equation, J. Math. Anal. Appl. 252 (2000), 804-812.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Abdelouaheb Ardjouni

Abderrahim Guerfi

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Ardjouni, A., & Guerfi, A. (2022). On the existence of mild solutions for totally nonlinear Caputo-Hadamard fractional differential equations. Results in Nonlinear Analysis, 5(2), 161-168. https://doi.org/10.53006/rna.1023029
AMA Ardjouni A, Guerfi A. On the existence of mild solutions for totally nonlinear Caputo-Hadamard fractional differential equations. RNA. Haziran 2022;5(2):161-168. doi:10.53006/rna.1023029
Chicago Ardjouni, Abdelouaheb, ve Abderrahim Guerfi. “On the Existence of Mild Solutions for Totally Nonlinear Caputo-Hadamard Fractional Differential Equations”. Results in Nonlinear Analysis 5, sy. 2 (Haziran 2022): 161-68. https://doi.org/10.53006/rna.1023029.
EndNote Ardjouni A, Guerfi A (01 Haziran 2022) On the existence of mild solutions for totally nonlinear Caputo-Hadamard fractional differential equations. Results in Nonlinear Analysis 5 2 161–168.
IEEE A. Ardjouni ve A. Guerfi, “On the existence of mild solutions for totally nonlinear Caputo-Hadamard fractional differential equations”, RNA, c. 5, sy. 2, ss. 161–168, 2022, doi: 10.53006/rna.1023029.
ISNAD Ardjouni, Abdelouaheb - Guerfi, Abderrahim. “On the Existence of Mild Solutions for Totally Nonlinear Caputo-Hadamard Fractional Differential Equations”. Results in Nonlinear Analysis 5/2 (Haziran 2022), 161-168. https://doi.org/10.53006/rna.1023029.
JAMA Ardjouni A, Guerfi A. On the existence of mild solutions for totally nonlinear Caputo-Hadamard fractional differential equations. RNA. 2022;5:161–168.
MLA Ardjouni, Abdelouaheb ve Abderrahim Guerfi. “On the Existence of Mild Solutions for Totally Nonlinear Caputo-Hadamard Fractional Differential Equations”. Results in Nonlinear Analysis, c. 5, sy. 2, 2022, ss. 161-8, doi:10.53006/rna.1023029.
Vancouver Ardjouni A, Guerfi A. On the existence of mild solutions for totally nonlinear Caputo-Hadamard fractional differential equations. RNA. 2022;5(2):161-8.