Araştırma Makalesi
BibTex RIS Kaynak Göster

İzmit Körfezi Doğu Kıyısındaki Doğal ve Antropojenik Kökenli Değişimlerin DSAS Aracı İle Analizi

Yıl 2024, , 83 - 101, 28.03.2024
https://doi.org/10.48123/rsgis.1410923

Öz

Bu çalışmada, jeomorfolojik olarak çeşitlilik sunan, yoğun antropojenik baskının olduğu İzmit Körfezi doğu kıyılarındaki 1975-2023 arası kıyı değişimleri DSAS aracı ile incelenmiştir. Çalışmada, Coğrafi Bilgi Sistemleri (CBS) ve Uzaktan Algılama (UA) teknikleri etkin şekilde kullanılmıştır. Araştırmada 1975-2020 arası 5’er yıllık arayla ve 2023 yılına ait Landsat uydu görüntüleri üzerinden NDWI ve MNDWI analizleri ile kıyı çizgileri belirlenmiştir. Daha sonra kıyı çizgileri DSAS aracındaki NSM, SCE, EPR ve LRR analizlerine tabi tutulmuş, kıyı çizgisi değişiminin zamansal açından mekânsal ve kantitatif verileri saptanmıştır. Çalışmada, NSM analizine göre ortalama 4,53 m, maksimum 510,6 m ve minimum -833,6 m’lik kıyı çizgisi değişimleri saptanmıştır. LRR istatistiğine göre İzmit Körfezi doğu kıyılarında yıllık 0,3 m, maksimum 13,1 m, minimum -20,8 m’lik değişimler hesaplanmıştır. Geniş alanlı kıyı değişimleri, Çuhane Deresi deltasının ortadan kalktığı, Kiraz Dere deltasının oluştuğu sahalarda, İzmit sahil şeridi dolgu alanında, Başiskele-Gölcük arası sanayi, tersane kıyı şeridinde gözlemlenmiştir. Meydana gelen kıyı değişimlerine, kıyı jeomorfolojisi dinamik koşullarının yanında doğrudan ve dolaylı olarak kıyıya yapılan antropojenik müdahalelerin neden olduğu tespit edilmiştir.

Kaynakça

  • Alevkayalı, Ç., Atayeter, Y., Yayla, O, Bilgin, T., & Akpınar, H. (2023). Burdur Gölü’nde uzun dönemli kıyı çizgisi değişimleri ve iklim ilişkisi: Zamansal-mekânsal eğilimler ve tahminler. Türk Coğrafya Dergisi, 82(2023), 37–50. https://doi.org/10.17211/tcd.1287976
  • Ataol, M., Kale, M. M., & Tekkanat, İ. S. (2019). Assessment of the changes in shoreline using digital shoreline analysis system: a case study of Kızılırmak Delta in northern Turkey from 1951 to 2017. Environmental Earth Science, 78, 579. https://doi.org/10.1007/s12665-019-8591-7
  • Aouiche, I., Daudi, L., Anthony, E. J., Sedrati, M., Ziane, E., Harti, A., & Dussouillez, P. (2016). Anthropogenic effects on shoreface and shoreline changes: Input from a multi-method analysis, Agadir Bay, Morocco. Geomorphology, 254, 16–31. http://dx.doi.org/10.1016/j.geomorph.2015.11.013
  • Bird, E. (2008). Coastal geomorphology: An introduction (Second edition). John Wiley & Sons Ltd.
  • Brown, A. G, Tooth, S., Chiverrell, R. C., Rose, J., Thomas, D., Wainwright, J., Bullard, J. E., Thorndycraft, V. R., Aalto, R., & Downs, P. (2013). The Anthropocene: is there a geomorphological case? Earth Surface Processes and Landforms, 38(4), 431–434. https://doi.org/10.1002/esp.3368
  • Brown, A. G., Tooth, S., Bullard, J. E., Thomas, D., Chiverrel, R., Plater, A., & Murton, J. (2017). The geomorphology of the Anthropocene: emergence, status and implications. Earth Surface Processes and Landforms, 42(1), 71–90. https://doi.org/10.1002/esp.3943
  • Cao, W., Sofia, G., & Tarolli, P. (2020). Geomorphometric Characterisation of Natural and Anthropogenic Land Covers. Progress in Earth and Planetary Science, 7, 2. https://doi.org/10.1186/s40645-019-0314-x
  • Ciritci, D., & Türk, T. (2020). Analysis of coastal changes using remote sensing and geographical information systems in the Gulf of Izmit, Turkey. Environmental Monitoring and Assessment, 192, 341–360. https://doi.org/10.1007/s10661-020-08255-9
  • Çoban, H., Koç, Ş. & Kale, M. M. (2020). Shoreline changes (1984 – 2019) in the Çoruh delta (Georgia/Batumi). International Journal of Geography and Geography Education, 42, 589–601. https://doi.org/10.32003/igge.741573
  • Crutzen, P. J., & Stoermer, E. F. (2000). The Anthropocene. Global Change Newsletter, 41, 17-18.
  • Cuff, D., (2008). Anthropogeomorphology. In D. Cuff & A. Goudie (Eds.), Oxford Companion to Global Change. Oxford University Press.
  • Darwish, K., Smith, S.E., Torab, M., Monsef, H., & Hussein, O. (2017). Geomorphological Changes along the Nile Delta Coastline between 1945 and 2015 Detected Using Satellite Remote Sensing and GIS. Journal of Coastal Research, 33(4), 786–794. http://dx.doi.org/10.2112/JCOASTRES-D-16-00056.1
  • Davidson-Arnott, R., (2010). Introduction to Coastal Processes and Geomorphology. Cambridge University Press.
  • Efe, R., & Demirci, A. (2001). Gölcük 1999 depreminde zemin ve yerşekili özelliklerinin şiddet ile hasar dağılışına etkisi. Türk Coğrafya Dergisi, 36, 1–15.
  • Ellis, E. C. (2017). Physical Geography in the Anthropocene. Progress in Physical Geography: Earth and Environment, 41(5), 525–532. https://doi.org/10.1177/0309133317736424
  • Erinç, S., (1986). Kıyılardan yararlanmada hukuki düzenlemelere jeomorfolojinin katkısı. Jeomorfoloji Dergisi, 14, 1–5.
  • Erol, O., (1989). Türkiye’de kıyıların doğal niteliği, kıyı ve kıyı varlıklarının korunmasına ilişkin Kıyı Kanunu ve uygulamaları konusunda jeomorfolojik yaklaşım. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü Bülteni, 6, 15–46.
  • Gao, B-C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. http://dx.doi.org/10.1016/S0034-4257(96)00067-3
  • Gómez-Pazo, A., Payo, A., Paz-Delgado, M. V., & Delgadillo-Calzadilla, M. A. (2022). Open Digital Shoreline Analysis System: ODSAS v1.0. Journal of Marine Science and Engineering, 10(1), 26. https://doi.org/10.3390/jmse10010026
  • Grottolli, H., Biausque, M., Jackson, D., & Cooper, J. A. (2023). Long-term drivers of shoreline change over two centuries on a headland-embayment beach. Earth Surface Processes and Landforms, 48(13), 2500–2520. https://doi.org/10.1002/esp.5641
  • Goudie, S. A. (1993). Human Influence in Geomorphology. Geomorphology, 7(1-3), 37–59. https://doi.org/10.1016/0169-555X(93)90011-P.
  • Goudie, A., (2020). The human impact in geomorphology – 50 years of change. Geomorphology, 366, 106–120. https://doi.org/10.1016/j.geomorph.2018.12.002
  • Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide (No. 2018-1179). US Geological Survey.
  • Hoelle, J. & Kawa, N. C. (2021). Placing the Anthropos in Anthropocene. Annals of the American Association of Geographers, 111(3), 655–662.
  • Hossain, S. Yasir, M. Wang, P. Ullah, S. Jahan, M., Hui, S., & Zhao, Z. (2021). Automatic shoreline extraction and change detection: A study on the southeast coast of Bangladesh. Marine Geology, 441, 106628. https://doi.org/10.1016/j.margeo.2021.106628
  • Hoşgören, M. Y. (1995). İzmit Körfezi Havzasının Jeomorfolojisi. In E. Meriç (Ed.), İzmit Körfezi Kuvaterner İstifi (pp. 343–348). Deniz Harp Okulu Komutanlığı Basımevi.
  • Hu, X., & Wang, Y. (2020). Coastline Fractal Dimension of Mainland, Island, and Estuaries Using Multi-temporal Landsat Remote Sensing Data from 1978 to 2018: A Case Study of the Pearl River Estuary Area. Remote Sensing, 12, 2482. https://doi.org/10.3390/rs12152482
  • Kale, M. M., Ataol, M. & Tekkanat, İ. S. (2019). Assessment of shoreline alterations using a Digital Shoreline Analysis System: a case study of changes in the Yeşilırmak Delta in northern Turkey from 1953 to 2017. Environmental Monitoring and Assessment, 191, 398. https://doi.org/10.1007/s10661-019-7535-8
  • Kazı, H., & Karabulut, M. (2023). Monitoring the shoreline changes of the Göksu Delta (Türkiye) using geographical information technologies and predictions for the near future. International Journal of Geography and Geography Education, 50, 329–352. https://doi.org/10.32003/igge.1304403
  • Kılar, H. & Çiçek, İ. (2018). Göksu Deltası Kıyı Çizgisi Değişiminin DSAS Aracı ile Belirlenmesi. Coğrafi Bilimler Dergisi, 16(1) , 89–104. https://doi.org/10.1501/Cogbil_0000000192
  • Kılar, H., (2023). Shoreline change assessment using DSAS technique: A case study on the coast of Meriç Delta (NW Türkiye). Regional Studies in Marine Science, 57, 102737. https://doi.org/10.1016/j.rsma.2022.102737
  • Kuleli, T. (2010). Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environmental Monitoring and Assessment, 167, 387–397. https://doi.org/10.1007/s10661-009-1057-8
  • Lazuardi, Z., Karim, A., & Sugianto, S. (2022). Analisis Perubahan Garis Pantai Menggunakan Digital Shoreline Analysis System (DSAS) di Pesisir Timur Kota Sabang. Jurnal Ilmiah Mahasiswa Pertanian, 7(1). http://doi.org/10.17969/jimfp.v7i1.18872
  • Li, J., Yang, L., Pu, R., & Liu, Y. (2017). A Review on Anthropogenic Geomorphology. Journal of Geographical Sciences, 27(1), 109–128.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. http://doi.org/10.1080/01431169608948714
  • Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K., & Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81–95. https://doi.org/10.1080/1064119X.2018.1448912
  • Özmen, B., (2000). 17 Ağustos 1999 İzmit Körfezi Depreminin Hasar Durumu (Rakamsal Verilerle). Türkiye Deprem Vakfı.
  • Öztürk, D., & Uzun, S. (2023). Kızılırmak Deltası Kıyı Çizgisinin EPR ve LRR Yöntemleriyle 1984–2022 Periyodunda Değişim Analizi ve 2030 Yılı Tahmini. Coğrafi Bilimler Dergisi, 21(2), 306–339. https://doi.org/10.33688/aucbd.1310132
  • Pouye, I., Adjoussi, D. P., Ndione, J. A., Sall, A. (2023). Topography, Slope and Geomorphology’s Influences on Shoreline Dynamics along Dakar’s Southern Coast, Senegal. Coasts, 3(1), 93–112. https://doi.org/10.3390/coasts3010006
  • Price S. J., Ford J. R., Cooper A. H., & Neal, C. (2011). Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 1056-1084, https://doi.org/10.1098/rsta.2010.0296
  • Rózsa P., & Novák, T. (2011). Mapping anthropogenic geomorphological sensitivity on global scale. Zeitschrift für Geomorphologie, 55(1), 109–117.
  • Samra, R. M. A., & Ali, R. R., (2021). Applying DSAS tool to detect coastal changes along Nile Delta, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 24(3-1), 463–470 https://doi.org/10.1016/j.ejrs.2020.11.002
  • Singh, K. V., Setia, R., Sahoo, S., Prasad, A., & Pateriya, B. (2015). Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30(6), 650–661. https://doi.org/10.1080/10106049.2014.965757
  • Siyal, A. A., Solangi, G. S., Siyal, P., Babar, M. M., & Ansari, K. (2022). Shoreline change assessment of Indus delta using GIS-DSAS and satellite data. Regional Studies in Marine Science, 53, 102405 https://doi.org/10.1016/j.rsma.2022.102405
  • Song, Y., Shen, Y., Xie, R., & Li, J. (2021). A DSAS-based study of central shoreline change in Jiangsu over 45 years. Anthropocene Coasts, 4(1), 115–128. http://dx.doi.org/10.1139/anc-2020-0001
  • Steffen, W., Grinevald, J., & Crutzen, P. (2011). The Anthropocene: Conceptual and Historical Perspectives. Philosophical Transactions of the Royal Society, 369, 842–867.
  • Szabó, J., David, L., & Loczy, D. (2010). Anthropogenic Geomorphology: A Guide to Man-Made Landforms. Springer. Tağıl, Ş., & Cürebal, İ. (2005). Altınova sahilinde kıyı çizgisi değişimini belirlemede uzaktan algılama ve coğrafi bilgi sistemleri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 15(2), 51–68.
  • Tağıl, Ş., Alevkayalı, Ç., & Aytan, B. (2023). Gediz Deltası Sulak Alanı Boyunca Kıyı Şeridi Evrimi ve Erozyon Hassasiyetinin Değerlendirilmesi. Ege Coğrafya Dergisi, 32(Cumhuriyet’in 100. Yılı Özel Sayısı), 127–142. https://doi.org/10.51800/ecd.1322803
  • Tarolli, P., Cao, W., Sofia, G., Evans, D., & Ellis, E. (2019). From features to fingerprints: A general diagnostic framework for anthropogenic geomorphology. Progress in Physical Geography, 43(1), 95–128.
  • Turoğlu, H., (1993). İzmit Körfezi doğu kıyısı dolgusunun mühendislik jeomorfolojisi açısından etüdü. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Dergisi, 4, 321–343.
  • Turoğlu, H., (2009). 3621 Sayılı Kıyı Kanunun ve Onun Uygulama Problemleri. Türk Coğrafya Dergisi, 53, 31–40.
  • Turoğlu, (2017). Deniz ve Göllerde Kıyı. In H. Turoğlu & H. Yiğitbaşıoğlu (Eds.), Yasal ve Bilimsel Boyutlarıyla KIYI (pp. 1–30). Jeomorfoloji Derneği.
  • Turoğlu, H. (2019). Yapay kıyıların jeomorfolojik tanımlaması: Diliskelesi kıyıları örneği (Kocaeli, Türkiye). Coğrafya Dergisi, 39, 11–27. https://doi.org/10.26650/JGEOG2019-0015
  • Uzun, M. (2021). İzmit Körfezi Kıyılarında İnsan Kaynaklı Jeomorfolojik Değişimler ve Süreçler. Jeomorfolojik Araştırmalar Dergisi, 2021(7), 61–81. https://doi.org/10.46453/jader.983465
  • Uzun, S. M. (2023). Riva (İstanbul) Kıyılarında Doğal ve Antropojenik Etkenlerle Değişen Kıyı Çizgisinin DSAS Aracı ile Analizi. Jeomorfolojik Araştırmalar Dergisi, 2023(11), 95–113. https://doi.org/10.46453/jader.1335105
  • Xu, H. (2006). Modification of Normalised difference water index NDWI to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.
  • Wu, Q., Miao, S., Huang, H., Guo, M., Zhang, L., Yang, L., & Zhou, C. (2022). Quantitative Analysis on Coastline Changes of Yangtze River Delta based on High Spatial Resolution Remote Sensing Images. Remote Sensing, 14, 310. https://doi.org/10.3390/rs14020310

Analysis of Natural and Anthropogenic Changes on the Eastern Coast of the Gulf of Izmit Using DSAS Tool

Yıl 2024, , 83 - 101, 28.03.2024
https://doi.org/10.48123/rsgis.1410923

Öz

In this study, coastal changes between 1975-2023 on the eastern coast of Izmit Bay, which offers geomorphological diversity and has intense anthropogenic pressure, were examined with DSAS tool. In the study, Geographic Information Systems (GIS) and Remote Sensing (RS) techniques were used effectively. In the study, coastlines were determined by NDWI, MNDWI analysis on Landsat satellite images of 1975-2020 at 5-year intervals and 2023. Then, the coastlines were subjected to NSM, SCE, EPR and LRR analyses in the DSAS tool, and spatial and quantitative data of the coastline change in terms of time were determined. According to the NSM analysis, the mean shoreline change was 4.53 m, the maximum was 510.6 m and the minimum was -833.6 m. According to LRR statistics, annual changes of 0.3 m, maximum 13.1 m and minimum -20.8 m were calculated on the eastern shores of Izmit Bay. Large area coastal changes were observed in the areas where the Çuhane Stream delta disappeared and the Kiraz Stream delta was formed, in the Izmit coastline filling area, in the industrial, shipyard coastline between Başiskele-Gölcük. It has been determined that the coastal changes are caused by the dynamic conditions of coastal geomorphology as well as direct and indirect anthropogenic interventions to the coast.

Kaynakça

  • Alevkayalı, Ç., Atayeter, Y., Yayla, O, Bilgin, T., & Akpınar, H. (2023). Burdur Gölü’nde uzun dönemli kıyı çizgisi değişimleri ve iklim ilişkisi: Zamansal-mekânsal eğilimler ve tahminler. Türk Coğrafya Dergisi, 82(2023), 37–50. https://doi.org/10.17211/tcd.1287976
  • Ataol, M., Kale, M. M., & Tekkanat, İ. S. (2019). Assessment of the changes in shoreline using digital shoreline analysis system: a case study of Kızılırmak Delta in northern Turkey from 1951 to 2017. Environmental Earth Science, 78, 579. https://doi.org/10.1007/s12665-019-8591-7
  • Aouiche, I., Daudi, L., Anthony, E. J., Sedrati, M., Ziane, E., Harti, A., & Dussouillez, P. (2016). Anthropogenic effects on shoreface and shoreline changes: Input from a multi-method analysis, Agadir Bay, Morocco. Geomorphology, 254, 16–31. http://dx.doi.org/10.1016/j.geomorph.2015.11.013
  • Bird, E. (2008). Coastal geomorphology: An introduction (Second edition). John Wiley & Sons Ltd.
  • Brown, A. G, Tooth, S., Chiverrell, R. C., Rose, J., Thomas, D., Wainwright, J., Bullard, J. E., Thorndycraft, V. R., Aalto, R., & Downs, P. (2013). The Anthropocene: is there a geomorphological case? Earth Surface Processes and Landforms, 38(4), 431–434. https://doi.org/10.1002/esp.3368
  • Brown, A. G., Tooth, S., Bullard, J. E., Thomas, D., Chiverrel, R., Plater, A., & Murton, J. (2017). The geomorphology of the Anthropocene: emergence, status and implications. Earth Surface Processes and Landforms, 42(1), 71–90. https://doi.org/10.1002/esp.3943
  • Cao, W., Sofia, G., & Tarolli, P. (2020). Geomorphometric Characterisation of Natural and Anthropogenic Land Covers. Progress in Earth and Planetary Science, 7, 2. https://doi.org/10.1186/s40645-019-0314-x
  • Ciritci, D., & Türk, T. (2020). Analysis of coastal changes using remote sensing and geographical information systems in the Gulf of Izmit, Turkey. Environmental Monitoring and Assessment, 192, 341–360. https://doi.org/10.1007/s10661-020-08255-9
  • Çoban, H., Koç, Ş. & Kale, M. M. (2020). Shoreline changes (1984 – 2019) in the Çoruh delta (Georgia/Batumi). International Journal of Geography and Geography Education, 42, 589–601. https://doi.org/10.32003/igge.741573
  • Crutzen, P. J., & Stoermer, E. F. (2000). The Anthropocene. Global Change Newsletter, 41, 17-18.
  • Cuff, D., (2008). Anthropogeomorphology. In D. Cuff & A. Goudie (Eds.), Oxford Companion to Global Change. Oxford University Press.
  • Darwish, K., Smith, S.E., Torab, M., Monsef, H., & Hussein, O. (2017). Geomorphological Changes along the Nile Delta Coastline between 1945 and 2015 Detected Using Satellite Remote Sensing and GIS. Journal of Coastal Research, 33(4), 786–794. http://dx.doi.org/10.2112/JCOASTRES-D-16-00056.1
  • Davidson-Arnott, R., (2010). Introduction to Coastal Processes and Geomorphology. Cambridge University Press.
  • Efe, R., & Demirci, A. (2001). Gölcük 1999 depreminde zemin ve yerşekili özelliklerinin şiddet ile hasar dağılışına etkisi. Türk Coğrafya Dergisi, 36, 1–15.
  • Ellis, E. C. (2017). Physical Geography in the Anthropocene. Progress in Physical Geography: Earth and Environment, 41(5), 525–532. https://doi.org/10.1177/0309133317736424
  • Erinç, S., (1986). Kıyılardan yararlanmada hukuki düzenlemelere jeomorfolojinin katkısı. Jeomorfoloji Dergisi, 14, 1–5.
  • Erol, O., (1989). Türkiye’de kıyıların doğal niteliği, kıyı ve kıyı varlıklarının korunmasına ilişkin Kıyı Kanunu ve uygulamaları konusunda jeomorfolojik yaklaşım. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü Bülteni, 6, 15–46.
  • Gao, B-C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. http://dx.doi.org/10.1016/S0034-4257(96)00067-3
  • Gómez-Pazo, A., Payo, A., Paz-Delgado, M. V., & Delgadillo-Calzadilla, M. A. (2022). Open Digital Shoreline Analysis System: ODSAS v1.0. Journal of Marine Science and Engineering, 10(1), 26. https://doi.org/10.3390/jmse10010026
  • Grottolli, H., Biausque, M., Jackson, D., & Cooper, J. A. (2023). Long-term drivers of shoreline change over two centuries on a headland-embayment beach. Earth Surface Processes and Landforms, 48(13), 2500–2520. https://doi.org/10.1002/esp.5641
  • Goudie, S. A. (1993). Human Influence in Geomorphology. Geomorphology, 7(1-3), 37–59. https://doi.org/10.1016/0169-555X(93)90011-P.
  • Goudie, A., (2020). The human impact in geomorphology – 50 years of change. Geomorphology, 366, 106–120. https://doi.org/10.1016/j.geomorph.2018.12.002
  • Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide (No. 2018-1179). US Geological Survey.
  • Hoelle, J. & Kawa, N. C. (2021). Placing the Anthropos in Anthropocene. Annals of the American Association of Geographers, 111(3), 655–662.
  • Hossain, S. Yasir, M. Wang, P. Ullah, S. Jahan, M., Hui, S., & Zhao, Z. (2021). Automatic shoreline extraction and change detection: A study on the southeast coast of Bangladesh. Marine Geology, 441, 106628. https://doi.org/10.1016/j.margeo.2021.106628
  • Hoşgören, M. Y. (1995). İzmit Körfezi Havzasının Jeomorfolojisi. In E. Meriç (Ed.), İzmit Körfezi Kuvaterner İstifi (pp. 343–348). Deniz Harp Okulu Komutanlığı Basımevi.
  • Hu, X., & Wang, Y. (2020). Coastline Fractal Dimension of Mainland, Island, and Estuaries Using Multi-temporal Landsat Remote Sensing Data from 1978 to 2018: A Case Study of the Pearl River Estuary Area. Remote Sensing, 12, 2482. https://doi.org/10.3390/rs12152482
  • Kale, M. M., Ataol, M. & Tekkanat, İ. S. (2019). Assessment of shoreline alterations using a Digital Shoreline Analysis System: a case study of changes in the Yeşilırmak Delta in northern Turkey from 1953 to 2017. Environmental Monitoring and Assessment, 191, 398. https://doi.org/10.1007/s10661-019-7535-8
  • Kazı, H., & Karabulut, M. (2023). Monitoring the shoreline changes of the Göksu Delta (Türkiye) using geographical information technologies and predictions for the near future. International Journal of Geography and Geography Education, 50, 329–352. https://doi.org/10.32003/igge.1304403
  • Kılar, H. & Çiçek, İ. (2018). Göksu Deltası Kıyı Çizgisi Değişiminin DSAS Aracı ile Belirlenmesi. Coğrafi Bilimler Dergisi, 16(1) , 89–104. https://doi.org/10.1501/Cogbil_0000000192
  • Kılar, H., (2023). Shoreline change assessment using DSAS technique: A case study on the coast of Meriç Delta (NW Türkiye). Regional Studies in Marine Science, 57, 102737. https://doi.org/10.1016/j.rsma.2022.102737
  • Kuleli, T. (2010). Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environmental Monitoring and Assessment, 167, 387–397. https://doi.org/10.1007/s10661-009-1057-8
  • Lazuardi, Z., Karim, A., & Sugianto, S. (2022). Analisis Perubahan Garis Pantai Menggunakan Digital Shoreline Analysis System (DSAS) di Pesisir Timur Kota Sabang. Jurnal Ilmiah Mahasiswa Pertanian, 7(1). http://doi.org/10.17969/jimfp.v7i1.18872
  • Li, J., Yang, L., Pu, R., & Liu, Y. (2017). A Review on Anthropogenic Geomorphology. Journal of Geographical Sciences, 27(1), 109–128.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. http://doi.org/10.1080/01431169608948714
  • Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K., & Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81–95. https://doi.org/10.1080/1064119X.2018.1448912
  • Özmen, B., (2000). 17 Ağustos 1999 İzmit Körfezi Depreminin Hasar Durumu (Rakamsal Verilerle). Türkiye Deprem Vakfı.
  • Öztürk, D., & Uzun, S. (2023). Kızılırmak Deltası Kıyı Çizgisinin EPR ve LRR Yöntemleriyle 1984–2022 Periyodunda Değişim Analizi ve 2030 Yılı Tahmini. Coğrafi Bilimler Dergisi, 21(2), 306–339. https://doi.org/10.33688/aucbd.1310132
  • Pouye, I., Adjoussi, D. P., Ndione, J. A., Sall, A. (2023). Topography, Slope and Geomorphology’s Influences on Shoreline Dynamics along Dakar’s Southern Coast, Senegal. Coasts, 3(1), 93–112. https://doi.org/10.3390/coasts3010006
  • Price S. J., Ford J. R., Cooper A. H., & Neal, C. (2011). Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 1056-1084, https://doi.org/10.1098/rsta.2010.0296
  • Rózsa P., & Novák, T. (2011). Mapping anthropogenic geomorphological sensitivity on global scale. Zeitschrift für Geomorphologie, 55(1), 109–117.
  • Samra, R. M. A., & Ali, R. R., (2021). Applying DSAS tool to detect coastal changes along Nile Delta, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 24(3-1), 463–470 https://doi.org/10.1016/j.ejrs.2020.11.002
  • Singh, K. V., Setia, R., Sahoo, S., Prasad, A., & Pateriya, B. (2015). Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30(6), 650–661. https://doi.org/10.1080/10106049.2014.965757
  • Siyal, A. A., Solangi, G. S., Siyal, P., Babar, M. M., & Ansari, K. (2022). Shoreline change assessment of Indus delta using GIS-DSAS and satellite data. Regional Studies in Marine Science, 53, 102405 https://doi.org/10.1016/j.rsma.2022.102405
  • Song, Y., Shen, Y., Xie, R., & Li, J. (2021). A DSAS-based study of central shoreline change in Jiangsu over 45 years. Anthropocene Coasts, 4(1), 115–128. http://dx.doi.org/10.1139/anc-2020-0001
  • Steffen, W., Grinevald, J., & Crutzen, P. (2011). The Anthropocene: Conceptual and Historical Perspectives. Philosophical Transactions of the Royal Society, 369, 842–867.
  • Szabó, J., David, L., & Loczy, D. (2010). Anthropogenic Geomorphology: A Guide to Man-Made Landforms. Springer. Tağıl, Ş., & Cürebal, İ. (2005). Altınova sahilinde kıyı çizgisi değişimini belirlemede uzaktan algılama ve coğrafi bilgi sistemleri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 15(2), 51–68.
  • Tağıl, Ş., Alevkayalı, Ç., & Aytan, B. (2023). Gediz Deltası Sulak Alanı Boyunca Kıyı Şeridi Evrimi ve Erozyon Hassasiyetinin Değerlendirilmesi. Ege Coğrafya Dergisi, 32(Cumhuriyet’in 100. Yılı Özel Sayısı), 127–142. https://doi.org/10.51800/ecd.1322803
  • Tarolli, P., Cao, W., Sofia, G., Evans, D., & Ellis, E. (2019). From features to fingerprints: A general diagnostic framework for anthropogenic geomorphology. Progress in Physical Geography, 43(1), 95–128.
  • Turoğlu, H., (1993). İzmit Körfezi doğu kıyısı dolgusunun mühendislik jeomorfolojisi açısından etüdü. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Dergisi, 4, 321–343.
  • Turoğlu, H., (2009). 3621 Sayılı Kıyı Kanunun ve Onun Uygulama Problemleri. Türk Coğrafya Dergisi, 53, 31–40.
  • Turoğlu, (2017). Deniz ve Göllerde Kıyı. In H. Turoğlu & H. Yiğitbaşıoğlu (Eds.), Yasal ve Bilimsel Boyutlarıyla KIYI (pp. 1–30). Jeomorfoloji Derneği.
  • Turoğlu, H. (2019). Yapay kıyıların jeomorfolojik tanımlaması: Diliskelesi kıyıları örneği (Kocaeli, Türkiye). Coğrafya Dergisi, 39, 11–27. https://doi.org/10.26650/JGEOG2019-0015
  • Uzun, M. (2021). İzmit Körfezi Kıyılarında İnsan Kaynaklı Jeomorfolojik Değişimler ve Süreçler. Jeomorfolojik Araştırmalar Dergisi, 2021(7), 61–81. https://doi.org/10.46453/jader.983465
  • Uzun, S. M. (2023). Riva (İstanbul) Kıyılarında Doğal ve Antropojenik Etkenlerle Değişen Kıyı Çizgisinin DSAS Aracı ile Analizi. Jeomorfolojik Araştırmalar Dergisi, 2023(11), 95–113. https://doi.org/10.46453/jader.1335105
  • Xu, H. (2006). Modification of Normalised difference water index NDWI to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.
  • Wu, Q., Miao, S., Huang, H., Guo, M., Zhang, L., Yang, L., & Zhou, C. (2022). Quantitative Analysis on Coastline Changes of Yangtze River Delta based on High Spatial Resolution Remote Sensing Images. Remote Sensing, 14, 310. https://doi.org/10.3390/rs14020310
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Coğrafi Bilgi Sistemleri ve Mekansal Veri Modelleme, Fotogrametri ve Uzaktan Algılama
Bölüm Araştırma Makaleleri
Yazarlar

Murat Uzun 0000-0003-2191-3936

Erken Görünüm Tarihi 24 Mart 2024
Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 27 Aralık 2023
Kabul Tarihi 5 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Uzun, M. (2024). İzmit Körfezi Doğu Kıyısındaki Doğal ve Antropojenik Kökenli Değişimlerin DSAS Aracı İle Analizi. Türk Uzaktan Algılama Ve CBS Dergisi, 5(1), 83-101. https://doi.org/10.48123/rsgis.1410923

Creative Commons License
Turkish Journal of Remote Sensing and GIS (Türk Uzaktan Algılama ve CBS Dergisi), Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.