Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of Land Cover Changes after the Water Retention of Yusufeli Dam by Google Earth Engine

Yıl 2025, Cilt: 6 Sayı: 2, 213 - 229, 27.09.2025
https://doi.org/10.48123/rsgis.1660237

Öz

This study aims to investigate the land cover changes in Yusufeli district of Artvin province, which is one of the richest regions in terms of biodiversity in Turkey and also contains Turkey's only biosphere reserve area, after the completion of the Yusufeli Dam and the start of water retention. The research was carried out using remote sensing techniques and Google Earth Engine (GEE) platform. GEE is a powerful tool for processing and analyzing large-scale satellite imagery and was used in this study to quickly and effectively detect land cover changes. Within the scope of the study, Sentinel-2 images of 2020 and 2024 with maximum 1% cloudiness were used. In the study, change analysis with Normalized Difference Water Index (NDWI), classification of both images with Support Vector Machines (SVM), and analysis studies on land use classes were carried out. Classification of Sentinel-2 images of 2020 and 2024 with SVM was performed with an overall accuracy of 93.74% and 92.36%, respectively. As a result of the change analyses, it was determined that the surface area of the Çoruh River increased by 2632.11 ha between 2020 and 2024, and the largest inundated areas were forest land, rocky and stony areas and settlement areas.

Kaynakça

  • Aghlmand, M., Kalkan, K., Onur, M. İ., Öztürk, G., & Ulutak, E. (2021). Google Earth Engine ile arazi kullanımı haritalarının üretimi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 38–47.
  • Akar, Ö., Saralıoğlu, E., Güngör, O., & Bayata, H. F. (2024). Semantic segmentation of very-high spatial resolution satellite images: A comparative analysis of 3D-CNN and traditional machine learning algorithms for automatic vineyard detection. International Journal of Engineering and Geosciences, 9(1), 12–24. https://doi.org/10.26833/ijeg.1252298
  • Akçın, H., & Tercan Köse, R. (2023). Tarım arazilerinde değişime neden olan parametrelerin Google Earth Engine veri madenciliği ve WebCBS aplikasyonu ile değerlendirilmesi. Journal of the Institute of Science and Technology, 13(2), 1363–1376. https://doi.org/10.21597/jist.1192622
  • Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
  • Danacıoğlu, Ş., & Öngül, H. C. (2023). Güzelhisar Havzasında Endüstriyel Gelişmenin Arazi Kullanımı ve Arazi Örtüsü Özellikleri Üzerindeki Etkisinin Bulut Tabanlı Makine Öğrenme Teknikleri ile Değerlendirilmesi. Ege Coğrafya Dergisi, 32(1), 135-150.
  • Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., El-Hennawy, M. T., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indices: Wadi El-Rayan lakes, Egypt. Remote Sensing Applications: Society and Environment, 19, Article 100347. https://doi.org/10.1016/j.rsase.2020.100347
  • Fragou, S., Kalogeropoulos, K., Stathopoulos, N., Louka, P., Srivastava, P. K., Karpouzas, S., Kalivas, D. P., & Petropoulos, G. P. (2020). Quantifying land cover changes in a Mediterranean environment using Landsat TM and support vector machines. Forests, 11(7), Article 750. https://doi.org/10.3390/f11070750
  • Guan, J., Zhang, H., Han, T., Cao, W., Wang, J., & Li, D. (2025). High-resolution mapping of shallow water bathymetry based on the scale-invariant effect using Sentinel-2 and GF-1 satellite remote sensing data. Remote Sensing, 17(4), Article 640. https://doi.org/10.3390/rs17040640
  • Guha, S., Govil, H., & Besoya, M. (2020). An investigation on seasonal variability between LST and NDWI in an urban environment using Landsat satellite data. Geomatics, Natural Hazards and Risk, 11(1), 1319–1345. https://doi.org/10.1080/19475705.2020.1789762
  • Halder, S., & Bose, S. (2024). Sustainable flood hazard mapping with GLOF: A Google Earth Engine approach. Natural Hazards Research, 4(4), 573–578. https://doi.org/10.1016/j.nhres.2024.01.002
  • He, M., Kimball, J., Maneta, M., Maxwell, B., Moreno, A., Beguería, S., & Wu, X. (2018). Regional crop gross primary productivity and yield estimation using fused Landsat–MODIS data. Remote Sensing, 10, Article 372. https://doi.org/10.3390/rs10030372
  • Kadavi, P. R., & Lee, C. W. (2018). Land cover classification analysis of volcanic island in Aleutian Arc using an artificial neural network (ANN) and a support vector machine (SVM) from Landsat imagery. Geosciences Journal, 22, 653–665. https://doi.org/10.1007/s12303-018-0023-2
  • Kavzoğlu, T., & Çölkesen, İ. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352–359. https://doi.org/10.1016/j.jag.2009.06.002
  • Khalil, M., & Kumar, J. S. (2025). Assessing Urban Heat Island Intensity in Damascus City Using Google Earth Engine and Landsat 8 and 9: a Comparative Analysis. Remote Sensing in Earth Systems Sciences, 8, 576–592.
  • Koday, Z., & Erhan, K. (2010). Yusufeli ilçesinin idari coğrafya analizi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 14(2), 231–241.
  • Liang, J., Gong, J., & Li, W. (2018). Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS Journal of Photogrammetry and Remote Sensing, 146, 91–107. https://doi.org/10.1016/j.isprsjprs.2018.08.019
  • Maulik, U., & Chakraborty, D. (2017). Remote sensing image classification: A survey of support-vector-machine-based advanced techniques. IEEE Geoscience and Remote Sensing Magazine, 5(1), 33–52.
  • Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Mutanga, O., & Kumar, L. (2019). Google Earth Engine applications. Remote Sensing, 11(5), Article 591. https://doi.org/10.3390/rs11050591
  • Özalp, M., Erdoğan Yüksel, E., & Yıldırımer, S. (2012, 16–19 Ekim). CBS yardımı ile Çoruh Nehri üzerinde planlanan baraj ve yol projelerinin neden olacağı arazi kullanım değişiminin ve arazi tahribatının belirlenmesi [Bildiri sunumu]. IV. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS), Zonguldak, Türkiye.
  • Özelkan, E. (2020). Water body detection analysis using NDWI indices derived from Landsat-8 OLI. Polish Journal of Environmental Studies, 29(2), 1759–1769. https://doi.org/10.15244/pjoes/110447
  • Pande, C. B., Srivastava, A., Moharir, K. N., Radwan, N., Mohd Sidek, L., Alshehri, F., … Zhran, M. (2024). Characterizing land use/land cover change dynamics by an enhanced random forest machine learning model: A Google Earth Engine implementation. Environmental Sciences Europe, 36(1), Article 84. https://doi.org/10.1186/s12302-024-00901-0
  • Parente, L., & Ferreira, L. (2018). Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sensing, 10(4), Article 606. https://doi.org/10.3390/rs10040606
  • Polat, P. (2023). Yusufeli’nde (Artvin) baraj öncesi doğal çevre özelliklerinin CBS yöntemleri ile belirlenmesi ve ekolojik hassasiyet, NDVI, NDMI analizleri. MANAS Sosyal Araştırmalar Dergisi, 12(1), 1–24.
  • Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote sensing, 12(14), Article 2291. https://doi.org/10.3390/rs12142291
  • Saralioglu, E., & Gungor, O. (2022). Semantic segmentation of land cover from high-resolution multispectral satellite images by spectral-spatial convolutional neural network. Geocarto International, 37(2), 657–677. https://doi.org/10.1080/10106049.2020.1734871
  • Saralioglu, E., & Vatandaslar, C. (2022). Land use/land cover classification with Landsat-8 and Landsat-9 satellite images: A comparative analysis between forest- and agriculture-dominated landscapes using different machine learning methods. Acta Geodaetica et Geophysica, 57(4), 695–716. https://doi.org/10.1007/s40328-022-00400-9
  • Srivastava, P. K., Han, D., Rico-Ramirez, M. A., Bray, M., & Islam, T. (2012). Selection of classification techniques for land use/land cover change investigation. Advances in Space Research, 50(9), 1250–1265. https://doi.org/10.1016/j.asr.2012.06.032
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
  • Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sensing, 8(3), Article 166. https://doi.org/10.3390/rs8030166
  • Loukika, K. N., Keesara, V. R., & Sridhar, V. (2021). Analysis of land use and land cover using machine learning algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability, 13(24), Article 13758. https://doi.org/10.3390/su132413758
  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
  • Sefrin, O., Riese, F. M., & Keller, S. (2021). Deep learning for land cover change detection. Remote Sensing, 13(1), Article 78. https://doi.org/10.3390/rs13010078
  • Torun, A. (2021). Batık kentin hatırası: Yusufeli kent kimliğindeki değişimler. Kent ve Çevre Araştırmaları Dergisi, 3(2), 56–80. https://doi.org/10.48118/yykentcevre.1021841
  • Turan, E., & Bayrakdar, E. (2020). Türkiye’nin su yönetim politikaları: Ulusal güvenlik açısından bir değerlendirme. Uluslararası Politik Araştırmalar Dergisi, 6(2), 1–19. https://doi.org/10.25272/j.2149-8539.2020.6.2.01
  • Tüfekçioğlu, M., & Yavuz, M. (2016). Yusufeli mikro havzasında (Artvin) yüzey erozyonu toprak kaybının tahmin edilmesi ve erozyon risk haritasının oluşturulması. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 17(2), 188–199. https://doi.org/10.17474/acuofd.47342
  • Tsai, Y. H., Stow, D., Chen, H. L., Lewison, R., An, L., & Shi, L. (2018). Mapping vegetation and land use types in Fanjingshan National Nature Reserve using Google Earth Engine. Remote Sensing, 10(6), Article 927. https://doi.org/10.3390/rs10060927
  • Vali, A., Comai, S., & Matteucci, M. (2020). Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sensing, 12(15), Article 2495. https://doi.org/10.3390/rs12152495
  • Yilgan, F., Miháliková, M., Kara, R. S., & Ustuner, M. (2025). Analysis of the forest fire in the ‘Bohemian Switzerland’ National Park using Landsat-8 and Sentinel-5P in Google Earth Engine. Natural Hazards, 121(5), 6133–6154. https://doi.org/10.1007/s11069-024-07052-8
  • Yousefi, S., Mirzaee, S., Almohamad, H., Al Dughairi, A. A., Gomez, C., Siamian, N., Alrasheedi, M., & Abdo, H. G. (2022). Image classification and land cover mapping using Sentinel-2 imagery: Optimization of SVM parameters. Land, 11(7), Article 993. https://doi.org/10.3390/land11070993
  • Zhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). Land use and land cover classification meets deep learning: A review. Sensors, 23(21), Article 8966. https://doi.org/10.3390/s23218966
  • Zhang, C., Zeren, Z., Li, J., Zheng, H., Raval, S., Ding, Y., & Ma, Y. (2025). An index-based approach to evaluate ecological environment in various surface coal mines using Google Earth Engine. Journal of Cleaner Production, 490, Article 144746. https://doi.org/10.1016/j.jclepro.2025.144746
  • Zhao, Z., Islam, F., Waseem, L. A., Tariq, A., Nawaz, M., Islam, I. U., Bibi, T., Rehman, N. U., Ahmad, W., Aslam, R. W., Raza, D., & Hatamleh, W. A. (2024). Comparison of three machine learning algorithms using Google Earth Engine for land use land cover classification. Rangeland Ecology & Management, 92(1), 129–137. https://doi.org/10.1016/j.rama.2023.10.007.
  • Zhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). Land use and land cover classification meets deep learning: A review. Sensors, 23(21), Article 8966. https://doi.org/10.3390/s23218966

Yusufeli Barajı Su Tutma Sonrası Arazi Örtüsü Değişimlerinin Google Earth Engine ile Analizi

Yıl 2025, Cilt: 6 Sayı: 2, 213 - 229, 27.09.2025
https://doi.org/10.48123/rsgis.1660237

Öz

Bu çalışma, Türkiye’nin en yüksek barajı olan Yusufeli Barajı’nın tamamlanması ve su tutulmaya başlanması sonrasında meydana gelen arazi örtüsü değişimlerini incelemeyi amaçlamaktadır. Araştırma, uzaktan algılama teknikleri ve Google Earth Engine (GEE) platformu kullanılarak gerçekleştirmiştir. GEE, büyük ölçekli uydu görüntülerinin işlenmesi ve analiz edilmesi için güçlü bir araç olup, bu çalışmada arazi örtüsü değişimlerini hızlı ve etkili bir şekilde tespit etmek için kullanılmıştır. Çalışma kapsamında, en fazla %1 bulutluluğa sahip 2020 ve 2024 yılına ait Sentinel-2 görüntüleri kullanılmıştır. Çalışmada Normalize Edilmiş Fark Su İndeksi (Normalized Difference Water Index (NDWI)) ile değişim analizi, her iki görüntünün Destek Vektör Makineleri (DVM) ile sınıflandırılması, arazi kullanım sınıfları üzerinden analiz çalışmaları gerçekleştirilmiştir. 2020 ve 2024 yıllarına ait Sentinel-2 görüntülerinin DVM ile sınıflandırılması sırasıyla %93.74 ve %92.36 genel doğruluk ile gerçekleştirilmiştir. Yapılan değişim analizleri sonucunda 2020-2024 yılları arasında Çoruh Nehri’nin yüzey alanında 2632.11 ha’lık artış ve su altında kalan en büyük alanları orman toprağı, kayalık ve taşlık alanlar ile iskân alanlarının oluşturduğu tespit edilmiştir.

Kaynakça

  • Aghlmand, M., Kalkan, K., Onur, M. İ., Öztürk, G., & Ulutak, E. (2021). Google Earth Engine ile arazi kullanımı haritalarının üretimi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 38–47.
  • Akar, Ö., Saralıoğlu, E., Güngör, O., & Bayata, H. F. (2024). Semantic segmentation of very-high spatial resolution satellite images: A comparative analysis of 3D-CNN and traditional machine learning algorithms for automatic vineyard detection. International Journal of Engineering and Geosciences, 9(1), 12–24. https://doi.org/10.26833/ijeg.1252298
  • Akçın, H., & Tercan Köse, R. (2023). Tarım arazilerinde değişime neden olan parametrelerin Google Earth Engine veri madenciliği ve WebCBS aplikasyonu ile değerlendirilmesi. Journal of the Institute of Science and Technology, 13(2), 1363–1376. https://doi.org/10.21597/jist.1192622
  • Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
  • Danacıoğlu, Ş., & Öngül, H. C. (2023). Güzelhisar Havzasında Endüstriyel Gelişmenin Arazi Kullanımı ve Arazi Örtüsü Özellikleri Üzerindeki Etkisinin Bulut Tabanlı Makine Öğrenme Teknikleri ile Değerlendirilmesi. Ege Coğrafya Dergisi, 32(1), 135-150.
  • Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., El-Hennawy, M. T., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indices: Wadi El-Rayan lakes, Egypt. Remote Sensing Applications: Society and Environment, 19, Article 100347. https://doi.org/10.1016/j.rsase.2020.100347
  • Fragou, S., Kalogeropoulos, K., Stathopoulos, N., Louka, P., Srivastava, P. K., Karpouzas, S., Kalivas, D. P., & Petropoulos, G. P. (2020). Quantifying land cover changes in a Mediterranean environment using Landsat TM and support vector machines. Forests, 11(7), Article 750. https://doi.org/10.3390/f11070750
  • Guan, J., Zhang, H., Han, T., Cao, W., Wang, J., & Li, D. (2025). High-resolution mapping of shallow water bathymetry based on the scale-invariant effect using Sentinel-2 and GF-1 satellite remote sensing data. Remote Sensing, 17(4), Article 640. https://doi.org/10.3390/rs17040640
  • Guha, S., Govil, H., & Besoya, M. (2020). An investigation on seasonal variability between LST and NDWI in an urban environment using Landsat satellite data. Geomatics, Natural Hazards and Risk, 11(1), 1319–1345. https://doi.org/10.1080/19475705.2020.1789762
  • Halder, S., & Bose, S. (2024). Sustainable flood hazard mapping with GLOF: A Google Earth Engine approach. Natural Hazards Research, 4(4), 573–578. https://doi.org/10.1016/j.nhres.2024.01.002
  • He, M., Kimball, J., Maneta, M., Maxwell, B., Moreno, A., Beguería, S., & Wu, X. (2018). Regional crop gross primary productivity and yield estimation using fused Landsat–MODIS data. Remote Sensing, 10, Article 372. https://doi.org/10.3390/rs10030372
  • Kadavi, P. R., & Lee, C. W. (2018). Land cover classification analysis of volcanic island in Aleutian Arc using an artificial neural network (ANN) and a support vector machine (SVM) from Landsat imagery. Geosciences Journal, 22, 653–665. https://doi.org/10.1007/s12303-018-0023-2
  • Kavzoğlu, T., & Çölkesen, İ. (2009). A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352–359. https://doi.org/10.1016/j.jag.2009.06.002
  • Khalil, M., & Kumar, J. S. (2025). Assessing Urban Heat Island Intensity in Damascus City Using Google Earth Engine and Landsat 8 and 9: a Comparative Analysis. Remote Sensing in Earth Systems Sciences, 8, 576–592.
  • Koday, Z., & Erhan, K. (2010). Yusufeli ilçesinin idari coğrafya analizi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 14(2), 231–241.
  • Liang, J., Gong, J., & Li, W. (2018). Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS Journal of Photogrammetry and Remote Sensing, 146, 91–107. https://doi.org/10.1016/j.isprsjprs.2018.08.019
  • Maulik, U., & Chakraborty, D. (2017). Remote sensing image classification: A survey of support-vector-machine-based advanced techniques. IEEE Geoscience and Remote Sensing Magazine, 5(1), 33–52.
  • Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Mutanga, O., & Kumar, L. (2019). Google Earth Engine applications. Remote Sensing, 11(5), Article 591. https://doi.org/10.3390/rs11050591
  • Özalp, M., Erdoğan Yüksel, E., & Yıldırımer, S. (2012, 16–19 Ekim). CBS yardımı ile Çoruh Nehri üzerinde planlanan baraj ve yol projelerinin neden olacağı arazi kullanım değişiminin ve arazi tahribatının belirlenmesi [Bildiri sunumu]. IV. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS), Zonguldak, Türkiye.
  • Özelkan, E. (2020). Water body detection analysis using NDWI indices derived from Landsat-8 OLI. Polish Journal of Environmental Studies, 29(2), 1759–1769. https://doi.org/10.15244/pjoes/110447
  • Pande, C. B., Srivastava, A., Moharir, K. N., Radwan, N., Mohd Sidek, L., Alshehri, F., … Zhran, M. (2024). Characterizing land use/land cover change dynamics by an enhanced random forest machine learning model: A Google Earth Engine implementation. Environmental Sciences Europe, 36(1), Article 84. https://doi.org/10.1186/s12302-024-00901-0
  • Parente, L., & Ferreira, L. (2018). Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sensing, 10(4), Article 606. https://doi.org/10.3390/rs10040606
  • Polat, P. (2023). Yusufeli’nde (Artvin) baraj öncesi doğal çevre özelliklerinin CBS yöntemleri ile belirlenmesi ve ekolojik hassasiyet, NDVI, NDMI analizleri. MANAS Sosyal Araştırmalar Dergisi, 12(1), 1–24.
  • Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote sensing, 12(14), Article 2291. https://doi.org/10.3390/rs12142291
  • Saralioglu, E., & Gungor, O. (2022). Semantic segmentation of land cover from high-resolution multispectral satellite images by spectral-spatial convolutional neural network. Geocarto International, 37(2), 657–677. https://doi.org/10.1080/10106049.2020.1734871
  • Saralioglu, E., & Vatandaslar, C. (2022). Land use/land cover classification with Landsat-8 and Landsat-9 satellite images: A comparative analysis between forest- and agriculture-dominated landscapes using different machine learning methods. Acta Geodaetica et Geophysica, 57(4), 695–716. https://doi.org/10.1007/s40328-022-00400-9
  • Srivastava, P. K., Han, D., Rico-Ramirez, M. A., Bray, M., & Islam, T. (2012). Selection of classification techniques for land use/land cover change investigation. Advances in Space Research, 50(9), 1250–1265. https://doi.org/10.1016/j.asr.2012.06.032
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001
  • Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sensing, 8(3), Article 166. https://doi.org/10.3390/rs8030166
  • Loukika, K. N., Keesara, V. R., & Sridhar, V. (2021). Analysis of land use and land cover using machine learning algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability, 13(24), Article 13758. https://doi.org/10.3390/su132413758
  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
  • Sefrin, O., Riese, F. M., & Keller, S. (2021). Deep learning for land cover change detection. Remote Sensing, 13(1), Article 78. https://doi.org/10.3390/rs13010078
  • Torun, A. (2021). Batık kentin hatırası: Yusufeli kent kimliğindeki değişimler. Kent ve Çevre Araştırmaları Dergisi, 3(2), 56–80. https://doi.org/10.48118/yykentcevre.1021841
  • Turan, E., & Bayrakdar, E. (2020). Türkiye’nin su yönetim politikaları: Ulusal güvenlik açısından bir değerlendirme. Uluslararası Politik Araştırmalar Dergisi, 6(2), 1–19. https://doi.org/10.25272/j.2149-8539.2020.6.2.01
  • Tüfekçioğlu, M., & Yavuz, M. (2016). Yusufeli mikro havzasında (Artvin) yüzey erozyonu toprak kaybının tahmin edilmesi ve erozyon risk haritasının oluşturulması. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 17(2), 188–199. https://doi.org/10.17474/acuofd.47342
  • Tsai, Y. H., Stow, D., Chen, H. L., Lewison, R., An, L., & Shi, L. (2018). Mapping vegetation and land use types in Fanjingshan National Nature Reserve using Google Earth Engine. Remote Sensing, 10(6), Article 927. https://doi.org/10.3390/rs10060927
  • Vali, A., Comai, S., & Matteucci, M. (2020). Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sensing, 12(15), Article 2495. https://doi.org/10.3390/rs12152495
  • Yilgan, F., Miháliková, M., Kara, R. S., & Ustuner, M. (2025). Analysis of the forest fire in the ‘Bohemian Switzerland’ National Park using Landsat-8 and Sentinel-5P in Google Earth Engine. Natural Hazards, 121(5), 6133–6154. https://doi.org/10.1007/s11069-024-07052-8
  • Yousefi, S., Mirzaee, S., Almohamad, H., Al Dughairi, A. A., Gomez, C., Siamian, N., Alrasheedi, M., & Abdo, H. G. (2022). Image classification and land cover mapping using Sentinel-2 imagery: Optimization of SVM parameters. Land, 11(7), Article 993. https://doi.org/10.3390/land11070993
  • Zhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). Land use and land cover classification meets deep learning: A review. Sensors, 23(21), Article 8966. https://doi.org/10.3390/s23218966
  • Zhang, C., Zeren, Z., Li, J., Zheng, H., Raval, S., Ding, Y., & Ma, Y. (2025). An index-based approach to evaluate ecological environment in various surface coal mines using Google Earth Engine. Journal of Cleaner Production, 490, Article 144746. https://doi.org/10.1016/j.jclepro.2025.144746
  • Zhao, Z., Islam, F., Waseem, L. A., Tariq, A., Nawaz, M., Islam, I. U., Bibi, T., Rehman, N. U., Ahmad, W., Aslam, R. W., Raza, D., & Hatamleh, W. A. (2024). Comparison of three machine learning algorithms using Google Earth Engine for land use land cover classification. Rangeland Ecology & Management, 92(1), 129–137. https://doi.org/10.1016/j.rama.2023.10.007.
  • Zhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). Land use and land cover classification meets deep learning: A review. Sensors, 23(21), Article 8966. https://doi.org/10.3390/s23218966
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fotogrametri ve Uzaktan Algılama
Bölüm Araştırma Makaleleri
Yazarlar

Ekrem Saralıoğlu 0000-0002-0609-3338

Baker Alahmed 0009-0005-8649-2468

Yayımlanma Tarihi 27 Eylül 2025
Gönderilme Tarihi 18 Mart 2025
Kabul Tarihi 18 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Saralıoğlu, E., & Alahmed, B. (2025). Yusufeli Barajı Su Tutma Sonrası Arazi Örtüsü Değişimlerinin Google Earth Engine ile Analizi. Türk Uzaktan Algılama ve CBS Dergisi, 6(2), 213-229. https://doi.org/10.48123/rsgis.1660237

Creative Commons License
Turkish Journal of Remote Sensing and GIS (Türk Uzaktan Algılama ve CBS Dergisi), Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.