Araştırma Makalesi
BibTex RIS Kaynak Göster

Grown Silicon Iron Oxide by DC- RF Magnetron Co-Sputtering Technique

Yıl 2024, , 133 - 140, 30.06.2024
https://doi.org/10.53501/rteufemud.1450119

Öz

In this study, the structure of silicon iron oxide (Si:Fe2O3) was grown using co-sputtering. The Si:Fe2O3 film was grown on glass substrates at a pressure of 8.5 mTorr and a temperature of 450°C for 35 minutes. Optical measurements have revealed that the band gap of the structure ranges from 2.54 to 2.73 eV. The roughness values of the films in AFM images are Ra 3.08 nm and Sa 2.7 nm for Si:Fe2O3, and Ra 1.88 nm and Sa 2.09 nm for Fe2O3, respectively. As can be seen from the XPS figures, the change in binding energy is attributed to electron exchange among silicon, iron, and oxygen. In the iron-silicon oxide structure, the energy increases slightly as a result of the chemical environment.
XRD measurements indicate that the size of crystal grains decreases gradually with an increase in silicon content. The Si4+ ion has a strong tendency to distribute itself within the tetrahedral region of spinel-like structures. The behavior of the structure is influenced by the stoichiometry of oxygen. The consistent results from both XRD and SEM images indicate that the crystal grain sizes gradually decrease as the silicon content increases.

Kaynakça

  • Bali, M. and Muetze A., (2017). Modeling the effect of cutting on the magnetic properties of electrical steel sheets. IEEE Transactions on Industrial Electronics, 64 (3), 2547–2556. https://doi.org/10.1109/TIE.2016.2589920
  • Bourchas, K., Stening, A., Soulard,J., Broddefalk, A., Lindenmo, M., Dahlen, M., Gyllensten, F. (2016). Influence of cutting and welding on magnetic properties of electrical steels. 2016 XXII International Conference on Electrical Machines (ICEM), 04-07 September 2016, Lausanne, Switzerland. https://doi.org/10.1109/ICELMACH.2016.7732770
  • Chu, M., Shao, Y., Peng, J., Dai, X., Li, H., Wu, Q. and Shi, D. (2013). Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 34(16), 4078-4088. https://doi.org/10.1016/j.biomaterials.2013.01.086
  • Chomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R. and Hubalek, J. (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacological Research, 62(2), 144-149. https://doi.org/10.1016/j.phrs.2010.01.014
  • Gasparov, L.V., Tanner, D.B., Romero, D.B., Berger, H., Margaritondo, G., Forro L. (2000). Infrared and Raman studies of the Verwey transition in magnetite. Physical Review B, 62(12), 7939–7944. https://doi.org/10.1103/PhysRevB.62.7939
  • Helbling, H., Benabou, A., Van Gorp, A., El Youssef, M., Tounzi, A., Boughanmi, W., Laloy, D. (2020). Effect on magnetic properties of inhomogeneous compressive stress in thickness direction of an electrical steel stack. Journal of Magnetism and Magnetic Materials, 500, 166353. https://doi.org/10.1016/j.jmmm.2019.166353
  • Hu, F., Macrenaris, K.W., Waters, E.A., Schultz-Sikma, E.A., Eckermann, A.L., Meade, T.J. (2010). Highly dispersible, superparamagnetic magnetite nanoflowers for magnetic resonance imaging. Chemical Communications, 46(1), 73-75. https://doi.org/10.1039/b916562b
  • Jubb, A.M. and Allen, H.C. (2010). Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. Applied Materials and İnterface, 2(10), 2804–2812. https://doi.org/10.1021/am1004943
  • Leary, A.M., Ohodnicki, P.R., McHenry, M.E. (2012). Soft magnetic materials in highfrequency, high-power conversion applications. JOM, 64 (7), 772–781. https://doi.org/10.1007/s11837-012-0350-0
  • Lee, C.Y., Wang, L., Kado, Y., Kirchgeorg, R., Schmuki, P. (2013). Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. Electrochemistry communications, 34, 308-311. https://doi.org/10.1016/j.elecom. 2013.07.024
  • Piekarz, P., Oleś, A.M., Parlinski, K. (2010). Comparative study of the electronic structures of Fe3O4 and Fe2SiO4. arXiv, 1007.2340. https://doi.org/10.48550/arXiv.1007.2340
  • Qayoom, M., Shah, K.A., Pandit, A.H. (2020). Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications. Journal of Electroceramics, 45, 7–14 https://doi.org/10.1007/s10832-020-00219-2
  • Schoppa, A., Schneider, J., Wuppermann, C-D., Bakon, T. (2003). Influence of welding and sticking of laminations on the magnetic properties of non-oriented electrical steels. Journal of Magnetism and Magnetic Materials, 254-255, 367–369. https://doi.org/10.1016/S0304-8853(02)00877-6
  • Shokrollahi, H. and Janghorban K., (2007). Soft magnetic composite materials (SMCs). Journal of Materials Processing Technology, 189 (1-3), 1–12. https://doi.org/10.1016/j.jmatprotec.2007.02.034
  • Silveyra, J.M., Ferrara, E., Huber, D.L., Monson, T.C. (2018). Soft magnetic materials for a sustainable and electrified world. Science, 362 (6413), eaao0195. https://doi.org/10.1126/science.aao0195
  • Uebe, R., Henn, V. ans Schüler, D. (2012). The maga protein of magnetospirilla ıs not ınvolved in bacterial magnetite biomineralization. Journal of Bacteriology, 194(5), 018-1023. https://doi.org/10.1128%2FJB.06356-11
  • Viezbicke, B.D., Patel, S., Davis, B.E., Birnie, D.P., III. (2015). Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Physica Status Solidi (b), 252(8), 1700-1710. https://doi.org/10.1002/pssb.201552007
  • Wei, X., Liu, T., Li, J., Chen, X. (2011). A magnetic-controlled amperometric biosensor based on composite bio-particulates Fe3O4 and nano-au with the signal enhancement by increasing loading of horseradish peroxidase. International Journal of Electrochemical Science, 6(10), 4953-4966. https://doi.org/10.1016/S1452-3981(23)18380-5
  • Xiao, L., Li, J., Brougham, D.F., Fox, E.K., Feliu, N., Bushmelev, A., Schmidt, A., Mertens, N., Kiessling, F.,,Valldor, M., Fadeel, B., Mathur S. (2011). Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano, 5(8), 6315-6324. https://doi.org/10.1021/nn201348s
  • Xiong, C.J., Yuan, X.H., Zhou, J.D., Chen, Y., Chen, F.H., Xu, L.X. (2013). Synthesis of folic acid-modified Fe3O4 nano-magnetic fluid for in vivo tumor cell labeling. African Journal of Pharmacy and Pharmacology, 7(12), 666-672.
  • Yamazaki, K. And Fukushima, W. (2015). Loss analysis of induction motors by considering shrink fitting of stator housings. IEEE Transactions on Magnetics, 51 (3), 1–4. https://doi.org/10.1109/TMAG.2014.2357842
  • Zhang, Z., Wang, X. and Yang, X. (2011). A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics. Analyst, 136(23), 4960-4965. https://doi.org/10.1039/C1AN15602K
  • Zhu, S., Guo, J., Dong, J., Cui, Z., Lu, T., Zhu, C., Zhang, D., Ma, J. (2013). Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrasonics Sonochemistry, 20 (3), 872-880. https://doi.org/10.1016/j.ultsonch.2012. 12.001
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yoğun Maddenin Elektronik ve Manyetik Özellikleri; Süperiletkenlik
Bölüm Araştırma Makaleleri
Yazarlar

Erdal Turgut 0000-0002-8747-545X

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 16 Mart 2024
Kabul Tarihi 5 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Turgut, E. (2024). Grown Silicon Iron Oxide by DC- RF Magnetron Co-Sputtering Technique. Recep Tayyip Erdoğan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 5(1), 133-140. https://doi.org/10.53501/rteufemud.1450119

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025