Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 103 - 110, 31.12.2024
https://doi.org/10.53501/rteufemud.1529544

Öz

Kaynakça

  • Akman Gündüz, N.E., Sevcan, M. and Özcan, Ö. (2020). Effect of cadmium and lead on total hemocyte count of Achroia grisella Fabr. (Lepidoptera: Pyralidae). Gümüshane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 190-194. Doi: https://doi.org/10.17714/gumusfenbil.531102
  • Al-Salim, N., Barraclough, E., Burgess, E., Clothier, B., Deurer, M., Green, S., Malone, L., Weir, G. (2011). quantum dot transport in soil, plants, and insects. Science of the Total Environment, 409, 3237–3248. Doi: https://doi.org/10.1016/j.scitotenv.2011.05.017
  • Andrade-Oliveira, A.L., Lacerda-Rodrigues, G., Pereira, M.F., Bahia, A.C., de Alcântara Machado, E., Rossi, C C. and Giambiagi-deMarval, M. (2023). Tenebrio molitor as a model system to study Staphylococcus spp virulence and horizontal gene transfer. Microbial Pathogenesis, 183, 106304. Doi: https://doi.org/10.1016/j.micpath.2023.106304
  • Atabati, A., Keykhosravi, A., Askari-Hesni, M., Vatandoost, J., Motamedi, M. (2015). Effects of copper sulfate on gill histopathology of grass carp (Ctenopharyngodon idella). -. Iranian Journal of Ichthyology, 2(1): 35-42. Doi: https://doi.org/10.22034/iji.v2i1.13
  • Baghban, A., Sendi, J.J., Zibaee, A. (2018). Effect of essential and non-essential elements on cellular immune system of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Invertebrate Survival Journal, 15(1), 158-168. Doi: https://doi.org/10.25431/1824307X/isj.v15i1.158-168
  • Banville, N., Browne, N. and Kavanagh, K. (2012). Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence, 3(6), 497-503.
  • Bernardes, R.C., Fernandes, K.M., Bastos, D.S. S., Freire, A.F.P.A., Lopes, M.P., de Oliveira, L.L., Tavares, M.G., Araujo, R.S., Martins, G. F. (2022). Impact of copper sulfate on survival, behavior, midgut morphology, and antioxidant activity of Partamona helleri (Apidae: Meliponini). Environmental Science and Pollution Research, 29(4), 6294-6305. Doi: 10.1007/s11356-021-16109-1
  • Biagi, M., Giachetti, D., Miraldi, E., Figura, N. (2014). New nonalcoholic formulation for hand disinfection. Journal of Chemotherapy, 26(2), 86-91. Doi: https://doi.org/10.1179/1973947813Y.0000000111
  • Borowska, J., Sulima, B., Niklińska, M. and Pyza E. (2004). Heavy metal accumulation and its effects on development, survival and immunocompetent cells of the house fly Musca domestica from closed laboratory populations as model organism. Fresenius Environmental Bulletin, 13, 1402-1409.
  • Bulut, C. ve Kubilay, A. (2022). Bakır Sülfatın (CuSO4.5H2O) Farklı konsantrasyonlarının gökkuşağı alabalıkları (Oncorhynchus mykiss) üzerine histopatolojik etkileri. Journal of Limnology and Freshwater Fisheries Research, 8(1), 18-27. Doi:10.17216/LimnoFish.777287
  • Eskin, A., Öztürk, Ş., Körükçü, M. (2019). Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods. Ecotoxicology, 28, 801-808. Doi: https://doi.org/10.1007/s10646-01902078-2
  • Eskin, A. and Bozdoğan, H. (2021). Effects of the copper oxide nanoparticles (CuO NPs) on Galleria mellonella hemocytes. Drug and Chemical Toxicology, 45(4), 1870–1880. Doi: https://doi.org/10.1080/01480545.2021.1892948
  • Eskin, A., Ekremoglu, M., Altinkaynak, C. (2022). Effects of organic-inorganic hybrid nanoflowers’ framework on hemocytes and enzymatic responses of the model organism, Galleria mellonella (Lepidoptera: Pyralidae). International Journal of Tropical Insect Science, 42, 333–344. Doi: https://doi.org/10.1007/s42690-02100551-2
  • Eskin, A. (2023). Galleria mellonella (L.) (Lepidoptera: Pyralidae) Pupalarının Eşeysel Yönden Bazı Biyolojik Parametrelerinin Karşılaştırılması. Doğa ve Mühendislik Biliminde Güncel Tartışmalar, BİDGE Yayınları, (12), 54-60.
  • George, P.J.E. and Ambrose, D. (2004). Impact of insecticides on the hemogram of Rhynocoris kumarii ambrose and livingstone (Hem., Reduviidae). Journal of Applied Entomology,128(9-10): 600–604. Doi: https://doi.org/10. 1111/j.1439-0418.2004.00896.x
  • Giammarino, A., Bellucci, N., Angiolella, L. (2024). Galleria mellonella as a model for the study of fungal pathogens: advantages and disadvantages. Pathogens, 13(3), 233. Doi: https://doi.org/10.3390/pathogens1303023
  • IBM-SPSS Statistics for Windows. (2011). Version 20.0. Elsevier, London, UK. IBM Corp. Released. Armonk, NY: IBM Corp.
  • Katalay, S., Ayhan, M.M. and Günal, A.Ç. (2019). The effects of zinc pyrithione on total hemocyte counts of mussel (Mytilus galloprovincialis Lamarck, 1819). Ege Journal of Fisheries and Aquatic Sciences, 36(2), 185-189. Doi: 10.12714/egejfas.2019.36.2.11
  • King, J.G. and Hillyer, J.F. (2013). Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection. BMC Biology, 11:55, 1-15. Doi: https://doi.org/10. 1186/1741-7007-11-55
  • Kirici, M., Turk, C. and Caglayan, C. (2017). Toxic effects of copper sulphate pentahydrate on antioxidant enzyme activities and lipid peroxidation of freshwater fish Capoeta umbla (Heckel, 1843) tissues. Applied Ecology & Environmental Research, 15(3), 1685-1696. Doi:10.15666/aeer/1503_16851696
  • Kurt, D. and Kayiş, T. (2015). Efects of the pyrethroid insecticide deltamethrin on the hemocytes of Galleria mellonella. Turkish Journal of Zoology, 39: 452–457. Doi: https://doi.org/10.3906/zoo-1405-66
  • Lodhi H.S., Tiwari K.J., Shukla, S. and Sharma U.D. (2008b). Alternations in total haemocyte counts (THCs) of freshwater prawn, Macrobranchium dayanum (Crustacea-Decapoda) after copper sulphate exposure. Journal of Advanced Zoology, 29(2):92-98.
  • Miah, M.A., Blore, K., Xue, R.D. (2021). Effect of copper sulphate pentahydrate on mosquito larval Aedes aegypti, Culex quınquefascıatus, and Anopheles quadrımaculatus in laboratory and under semi-fıeld conditions. Journal of the Florida Mosquito Control Association, 68(1), 79-85. Doi: https://doi.org/10.32473/jfmca.v68i1.129103
  • Morales-Ramos, J.A., Kay, S., Rojas, M.G., Shapiro-Ilan, D.I. and Tedders, W.L. (2015). Morphometric analysis of instar variation in Tenebrio molitor (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America, 108(2), 146-159. Doi: 10.1093/aesa/sau049
  • Moyetta, N.R., Ramos, F.O., Leyria, J., Canavoso, L.E., Fruttero, L.L. (2021). Morphological and ultrastructural characterization of hemocytes in an insect model, the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). Insects, 12(7), 640. Doi: https://doi.org/10.3390/insects12070640
  • Mussel, Z., Ramsay, R., Davenport, J., Ohalloran J., Culloty, C.S. (2015). Effect of the microcystin-producing cyanobacterıum, Microcystis aeruginosa, on immune functions of the zebra mussel Dreissena polymorpha. Journal of Shellfish Research, 34(2), 433-442.
  • Pardo, C., Bellati, A., Polverino, G., Canestrelli, D. (2024). The dark side of organic farming: Copper sulphate compromises the life history and behaviour of the walking stick insect, Bacillus rossius. Science of The Total Environment, 29, 6294–6305. Doi: https://doi.org/10.1007/s11356-021-16109-1
  • Prescott, S.C. and Breed, R.S. (1910). The determination of the number of body cells in milk by a direct method. American Journal of Public Hygiene, 663-664.
  • Raes, H., Bohyn, W., Rycke, De H.P., Jacobs, F. (1989). Membrane-bound iron-rich granules in fat cells and midgut cells of the adult honeybee (Apis mellifera L.). Apidologie, 20, 327-337.
  • Rahman, A., Pittarate, S., Perumal, V., Rajula, J., Thungrabeab, M., Mekchay, S., Krutmuang, P. (2022). Larvicidal and antifeedant effects of copper nano-pesticides against Spodoptera frugiperda (JE Smith) and its immunological response. Insects, 13(11), 1030. Doi: 10.3390/insects13111030
  • Ramarao, N., Nielsen-Leroux, C. and Lereclus, D. (2012). The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. Journal of Visualized Experiments, 70, 4392.
  • Teramoto, T. and Tanaka, T. (2004). Mechanism of reduction in the number of the circulating hemocytes in the Pseudaletia separata host parasitized by Cotesia kariyai. Journal of Insect Physiology, 50, 1103–1111.
  • Tojo, S., Naganuma, F., Arakawa, K. ve Yokoo, S. (2000). Involvement of both granular cells and plasmatocytes in phagocytic reactions in the Greater Wax Moth, Galleria mellonella. Journal of Insect Physiology, 46, 1129-1135.
  • Tunçsoy, B., Kara, A., Özalp, P. (2020). Cu, Zn ve karışımlarının Galleria mellonella L. (Lepidoptera: Pyralidae) larvalarının hemosit tipleri ve sayıları üzerine etkileri. Journal of Anatolian Environmental and Animal Sciences, 5(1), 45-51. Doi: https://doi.org/10.35229/jaes.649536

Bakır sülfat pentahidratın (CuSO4.5H2O) büyük balmumu güvesi Galleria mellonella (Lepidoptera: Pyralidae) ve un kurdu Tenebrio molitor (Coleoptera: Tenebrionidae) larvalarının hemosit sayıları üzerine etkisi

Yıl 2024, , 103 - 110, 31.12.2024
https://doi.org/10.53501/rteufemud.1529544

Öz

Gerçekleştirilen bu çalışmada, bakır sülfat pentahidratın (CuSO4.5H2O) (BSP), 100, 250 ve 500 ppm dozlarının, Galleria mellonella (Lepidoptera: Pyralidae) ve Tenebrio molitor (Coleoptera: Tenebrionidae) larvalarının total hemosit sayıları (THS) üzerine etkisi incelenmiştir. BSP, her iki türün son dönem larvalarına zorla besleme tekniği ile verilmiştir. BSP maruziyetinin 24. saat sonrasında larvaların THS sayıları belirlenmiştir. Elde edilen sonuçlara göre, 100, 250 ve 500 ppm dozlarına maruz kalan G. mellonella larvalarının THS değerleri kontrol grubu ile karşılaştırıldığında istatistiksel olarak önemli bir farklılık elde edilmez iken, 250 ppm BSP dozuna maruz kalan T. molitor larvalarının THS değerleri kontrol grubuna göre önemli düzeyde artış göstermiştir.

Kaynakça

  • Akman Gündüz, N.E., Sevcan, M. and Özcan, Ö. (2020). Effect of cadmium and lead on total hemocyte count of Achroia grisella Fabr. (Lepidoptera: Pyralidae). Gümüshane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 190-194. Doi: https://doi.org/10.17714/gumusfenbil.531102
  • Al-Salim, N., Barraclough, E., Burgess, E., Clothier, B., Deurer, M., Green, S., Malone, L., Weir, G. (2011). quantum dot transport in soil, plants, and insects. Science of the Total Environment, 409, 3237–3248. Doi: https://doi.org/10.1016/j.scitotenv.2011.05.017
  • Andrade-Oliveira, A.L., Lacerda-Rodrigues, G., Pereira, M.F., Bahia, A.C., de Alcântara Machado, E., Rossi, C C. and Giambiagi-deMarval, M. (2023). Tenebrio molitor as a model system to study Staphylococcus spp virulence and horizontal gene transfer. Microbial Pathogenesis, 183, 106304. Doi: https://doi.org/10.1016/j.micpath.2023.106304
  • Atabati, A., Keykhosravi, A., Askari-Hesni, M., Vatandoost, J., Motamedi, M. (2015). Effects of copper sulfate on gill histopathology of grass carp (Ctenopharyngodon idella). -. Iranian Journal of Ichthyology, 2(1): 35-42. Doi: https://doi.org/10.22034/iji.v2i1.13
  • Baghban, A., Sendi, J.J., Zibaee, A. (2018). Effect of essential and non-essential elements on cellular immune system of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Invertebrate Survival Journal, 15(1), 158-168. Doi: https://doi.org/10.25431/1824307X/isj.v15i1.158-168
  • Banville, N., Browne, N. and Kavanagh, K. (2012). Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence, 3(6), 497-503.
  • Bernardes, R.C., Fernandes, K.M., Bastos, D.S. S., Freire, A.F.P.A., Lopes, M.P., de Oliveira, L.L., Tavares, M.G., Araujo, R.S., Martins, G. F. (2022). Impact of copper sulfate on survival, behavior, midgut morphology, and antioxidant activity of Partamona helleri (Apidae: Meliponini). Environmental Science and Pollution Research, 29(4), 6294-6305. Doi: 10.1007/s11356-021-16109-1
  • Biagi, M., Giachetti, D., Miraldi, E., Figura, N. (2014). New nonalcoholic formulation for hand disinfection. Journal of Chemotherapy, 26(2), 86-91. Doi: https://doi.org/10.1179/1973947813Y.0000000111
  • Borowska, J., Sulima, B., Niklińska, M. and Pyza E. (2004). Heavy metal accumulation and its effects on development, survival and immunocompetent cells of the house fly Musca domestica from closed laboratory populations as model organism. Fresenius Environmental Bulletin, 13, 1402-1409.
  • Bulut, C. ve Kubilay, A. (2022). Bakır Sülfatın (CuSO4.5H2O) Farklı konsantrasyonlarının gökkuşağı alabalıkları (Oncorhynchus mykiss) üzerine histopatolojik etkileri. Journal of Limnology and Freshwater Fisheries Research, 8(1), 18-27. Doi:10.17216/LimnoFish.777287
  • Eskin, A., Öztürk, Ş., Körükçü, M. (2019). Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods. Ecotoxicology, 28, 801-808. Doi: https://doi.org/10.1007/s10646-01902078-2
  • Eskin, A. and Bozdoğan, H. (2021). Effects of the copper oxide nanoparticles (CuO NPs) on Galleria mellonella hemocytes. Drug and Chemical Toxicology, 45(4), 1870–1880. Doi: https://doi.org/10.1080/01480545.2021.1892948
  • Eskin, A., Ekremoglu, M., Altinkaynak, C. (2022). Effects of organic-inorganic hybrid nanoflowers’ framework on hemocytes and enzymatic responses of the model organism, Galleria mellonella (Lepidoptera: Pyralidae). International Journal of Tropical Insect Science, 42, 333–344. Doi: https://doi.org/10.1007/s42690-02100551-2
  • Eskin, A. (2023). Galleria mellonella (L.) (Lepidoptera: Pyralidae) Pupalarının Eşeysel Yönden Bazı Biyolojik Parametrelerinin Karşılaştırılması. Doğa ve Mühendislik Biliminde Güncel Tartışmalar, BİDGE Yayınları, (12), 54-60.
  • George, P.J.E. and Ambrose, D. (2004). Impact of insecticides on the hemogram of Rhynocoris kumarii ambrose and livingstone (Hem., Reduviidae). Journal of Applied Entomology,128(9-10): 600–604. Doi: https://doi.org/10. 1111/j.1439-0418.2004.00896.x
  • Giammarino, A., Bellucci, N., Angiolella, L. (2024). Galleria mellonella as a model for the study of fungal pathogens: advantages and disadvantages. Pathogens, 13(3), 233. Doi: https://doi.org/10.3390/pathogens1303023
  • IBM-SPSS Statistics for Windows. (2011). Version 20.0. Elsevier, London, UK. IBM Corp. Released. Armonk, NY: IBM Corp.
  • Katalay, S., Ayhan, M.M. and Günal, A.Ç. (2019). The effects of zinc pyrithione on total hemocyte counts of mussel (Mytilus galloprovincialis Lamarck, 1819). Ege Journal of Fisheries and Aquatic Sciences, 36(2), 185-189. Doi: 10.12714/egejfas.2019.36.2.11
  • King, J.G. and Hillyer, J.F. (2013). Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection. BMC Biology, 11:55, 1-15. Doi: https://doi.org/10. 1186/1741-7007-11-55
  • Kirici, M., Turk, C. and Caglayan, C. (2017). Toxic effects of copper sulphate pentahydrate on antioxidant enzyme activities and lipid peroxidation of freshwater fish Capoeta umbla (Heckel, 1843) tissues. Applied Ecology & Environmental Research, 15(3), 1685-1696. Doi:10.15666/aeer/1503_16851696
  • Kurt, D. and Kayiş, T. (2015). Efects of the pyrethroid insecticide deltamethrin on the hemocytes of Galleria mellonella. Turkish Journal of Zoology, 39: 452–457. Doi: https://doi.org/10.3906/zoo-1405-66
  • Lodhi H.S., Tiwari K.J., Shukla, S. and Sharma U.D. (2008b). Alternations in total haemocyte counts (THCs) of freshwater prawn, Macrobranchium dayanum (Crustacea-Decapoda) after copper sulphate exposure. Journal of Advanced Zoology, 29(2):92-98.
  • Miah, M.A., Blore, K., Xue, R.D. (2021). Effect of copper sulphate pentahydrate on mosquito larval Aedes aegypti, Culex quınquefascıatus, and Anopheles quadrımaculatus in laboratory and under semi-fıeld conditions. Journal of the Florida Mosquito Control Association, 68(1), 79-85. Doi: https://doi.org/10.32473/jfmca.v68i1.129103
  • Morales-Ramos, J.A., Kay, S., Rojas, M.G., Shapiro-Ilan, D.I. and Tedders, W.L. (2015). Morphometric analysis of instar variation in Tenebrio molitor (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America, 108(2), 146-159. Doi: 10.1093/aesa/sau049
  • Moyetta, N.R., Ramos, F.O., Leyria, J., Canavoso, L.E., Fruttero, L.L. (2021). Morphological and ultrastructural characterization of hemocytes in an insect model, the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). Insects, 12(7), 640. Doi: https://doi.org/10.3390/insects12070640
  • Mussel, Z., Ramsay, R., Davenport, J., Ohalloran J., Culloty, C.S. (2015). Effect of the microcystin-producing cyanobacterıum, Microcystis aeruginosa, on immune functions of the zebra mussel Dreissena polymorpha. Journal of Shellfish Research, 34(2), 433-442.
  • Pardo, C., Bellati, A., Polverino, G., Canestrelli, D. (2024). The dark side of organic farming: Copper sulphate compromises the life history and behaviour of the walking stick insect, Bacillus rossius. Science of The Total Environment, 29, 6294–6305. Doi: https://doi.org/10.1007/s11356-021-16109-1
  • Prescott, S.C. and Breed, R.S. (1910). The determination of the number of body cells in milk by a direct method. American Journal of Public Hygiene, 663-664.
  • Raes, H., Bohyn, W., Rycke, De H.P., Jacobs, F. (1989). Membrane-bound iron-rich granules in fat cells and midgut cells of the adult honeybee (Apis mellifera L.). Apidologie, 20, 327-337.
  • Rahman, A., Pittarate, S., Perumal, V., Rajula, J., Thungrabeab, M., Mekchay, S., Krutmuang, P. (2022). Larvicidal and antifeedant effects of copper nano-pesticides against Spodoptera frugiperda (JE Smith) and its immunological response. Insects, 13(11), 1030. Doi: 10.3390/insects13111030
  • Ramarao, N., Nielsen-Leroux, C. and Lereclus, D. (2012). The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. Journal of Visualized Experiments, 70, 4392.
  • Teramoto, T. and Tanaka, T. (2004). Mechanism of reduction in the number of the circulating hemocytes in the Pseudaletia separata host parasitized by Cotesia kariyai. Journal of Insect Physiology, 50, 1103–1111.
  • Tojo, S., Naganuma, F., Arakawa, K. ve Yokoo, S. (2000). Involvement of both granular cells and plasmatocytes in phagocytic reactions in the Greater Wax Moth, Galleria mellonella. Journal of Insect Physiology, 46, 1129-1135.
  • Tunçsoy, B., Kara, A., Özalp, P. (2020). Cu, Zn ve karışımlarının Galleria mellonella L. (Lepidoptera: Pyralidae) larvalarının hemosit tipleri ve sayıları üzerine etkileri. Journal of Anatolian Environmental and Animal Sciences, 5(1), 45-51. Doi: https://doi.org/10.35229/jaes.649536
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekolojik Fizyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Ata Eskin 0000-0002-7953-654X

Sabri Taşdirek 0009-0003-6299-811X

Fatih Kirmizikar 0009-0009-1467-419X

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 7 Ağustos 2024
Kabul Tarihi 2 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Eskin, A., Taşdirek, S., & Kirmizikar, F. (2024). Bakır sülfat pentahidratın (CuSO4.5H2O) büyük balmumu güvesi Galleria mellonella (Lepidoptera: Pyralidae) ve un kurdu Tenebrio molitor (Coleoptera: Tenebrionidae) larvalarının hemosit sayıları üzerine etkisi. Recep Tayyip Erdogan University Journal of Science and Engineering, 5(2), 103-110. https://doi.org/10.53501/rteufemud.1529544

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025