Araştırma Makalesi
BibTex RIS Kaynak Göster

Pediastrum boryanum (Turpin) Meneghini’nin Antibakteriyal ve Antifungal Etkilerinin Araştırılması

Yıl 2025, Cilt: 6 Sayı: 3, 711 - 720, 31.12.2025
https://doi.org/10.53501/rteufemud.1664536
https://izlik.org/JA92US85YL

Öz

Bu çalışmada, Yeşilırmak Nehri bentik ve pelajik habitatlarından alınarak kültürü yapılan Pediastrum boryanum (Turpin) Meneghini (Synonim Pseudopediastrum boryanum (Turpin) E.Hegewald)’un tris-HCL, n-butanol ve etanol ekstraktlarının çeşitli mikroorganizma türleri üzerinde antibakteriyal ve antifungal etkileri araştırılmıştır.
Antimikrobiyal aktivite testleri, disk difüzyon yöntemi ile Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 7644, Escherichia coli O 157:H7, Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium CCM 5445, Candida albicans ATCC 10239 mikroorganizmaları üzerinde denendi.
Sonuç olarak, antibakteriyal aktivite testlerinde P. boryanum’un tampon ekstraktının, Listeria monocytogenes ATCC 7644 üzerinde oldukça etkili antibakteriyal özelliğe sahip olduğu tespit edildi. Escherichia coli O 157:H7 suşunun en duyarlı mikroorganizma, Bacillus subtilis ATCC 6633 suşunun ise en dirençli mikroorganizma olduğu; en etkili çözücünün 0,5 M Tris-HCL pH:8,00 olduğu kaydedildi. Antifungal aktivite testleri ile P. boryanum’un etanol ekstraktının, Candida albicans ATCC 10239 üzerinde oldukça etkili antifungal özelliğe sahip olduğu görüldü.

Kaynakça

  • Al-Wakeel, A. H., Elbahnaswy, S., El‐Moaty, A. A., El-Ghamry, A. M., El-Khateeb, A. Y., Risha, E., Zahran, E. (2024). Green synthesis and characterization of SeNPs using Pediastrum boryanum extract and evaluation of their biological activities. Mansoura Veterinary Medical Journal, 25(1), 1. https://doi.org/10.35943/2682-2512.1229
  • Clinical and Laboratory Standards Institute. (2025). Performance standards for antimicrobial susceptibility testing; 33rd edition. CLSI supplement M100. Wayne, PA: CLSI.
  • Corrêa da Silva, M. G., Pires Ferreira, S., Dora, C. L., Hort, M. A., Giroldo, D., Prates, D. F., Muccillo-Baisch, A. L. (2020). Phenolic compounds and antioxidant capacity of Pediastrum boryanum (Chlorococcales) biomass. International Journal of Environmental Health Research, 32(1), 168–180. https://doi.org/10.1080/09603123.2020.1744113
  • El-Sheekh, M. M., Osman, M. E., Dyab, M. A., Amer, M. S. (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ Toxicol Pharmacol, 21(1), 42-50. https://doi.org/10.1016/j.etap.2005.06.006
  • European Committee on Antimicrobial Susceptibility Testing. (2025). EUCAST clinical breakpoints: Bacteria.
  • Fitton, J. H. (2006). Antiviral properties of marine algae. World seaweed resources. Windows & Macintosch. ETI Information Services, Workingham, UK, 7.
  • Gnanavel, V., Roopan, S. M., Rajeshkumar, S. (2019). Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture, 507, 1–6. https://doi.org/10.1016/j.aquaculture.2019.04.004
  • Guiry, M.D., Guiry, G.M. (2024). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org
  • Koçer, F., Sugeçti, S. (2015). Ticari öneme sahip doğal özütlerin klinik patojen mikroorganizmalara karşı antimikrobiyal aktivitesi. Anadolu Doğa Bilimleri Dergisi, 6, 28-34.
  • Lobban, C.S., Chapman, D.J., Kremer, B.P. (1988). Experimental Phycology A Laboratory Manual, Chambridge Univ.Press, P.2941.
  • Maschek, J. A., Baker, B. J. (2008). The chemistry of algal secondary metabolism. In Algal chemical ecology (pp. 1-24). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Meenakshi, S., Umayaparvathi, S., Arumugam, M., Balasubramanian, T. (2011). In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, 1(1), 66–70. https://doi.org/10.1016/s2221-1691(11)60126-3
  • Moniharapon, E., Hashinaga, F. (2004). Antimicrobial activity of atung (Parinarium glaberrimum Hassk) fruit extract. Pakistan Journal of Biological Sciences, 7(6), 1057-1061. https://doi.org/10.3923/pjbs.2004.1057.1061
  • Reller, L. B., Weinstein, M., Jorgensen, J. H., Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical infectious diseases, 49(11), 1749-1755. https://doi.org/10.1086/647952
  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1-61. https://doi.org/10.1099/00221287-111-1-1
  • Sadıq B., Butt G. Y., Ajaib M., Usman A., Hussain N., (2016). Evaluation of antibacterial competence of Cladophora glomerata and Lyngbya diguetii. Biologia (Pakistan). 62, 169-172.
  • Saleh, B., Al Mariri, A. (2017). Antimicrobial activity of the marine algal extracts against selected pathogens. Journal of Agricultural Science and Technology, 19, 1067-1077. https://dor.isc.ac/dor/20.1001.1.16807073.2017.19.5.6.9
  • Salvador, S. N., Gómez Garreta, M. A., Lavelli, L., Ribera Siguán, M. A. (2007). Antimicrobial activity of Iberian macroalgae. Scientia Marina, 71, 101-113. https://doi.org/10.3989/scimar.2007.71n1101
  • Sharma, N., Gruszewski, H.A., Park, S.W., Holm, D.G., Vivanco, J.M. (2004). Purification of an isoform of patatin with antimicrobial activity against Phytophthora infestans. Plant Physiology and Biochemistry, 42, 647-655. https://doi.org/10.1016/j.plaphy.2004.05.010
  • Silici S., Koc A.N. (2006). Comparative study of in vitro methods to analyse the antifungal activity of propolis against yeasts isolated from patients with superficial mycoses. Letters in Applied Microbiology, 43(3), 318-324. https://doi.org/10.1111/j.1472-765X.2006.01949.x
  • Soltani, S., Ebrahimzadeh, M. A., Khoshrooei, R., Rahmani, Z. (2012). Antibacterial and antihemolytic activities of Enteromorpha intestinalis in Caspian Sea Coast, Iran. Journal of Medicinal Plants Research, 6(3), 530-533. https://doi.org/10.5897/JMPR11.1462
  • Somnath Chakraborty, S. C., Upasana Ghosh, U. G. (2010). Oceans: a store house of drugs-a review. Journal of Pharmacy Research, 3(6), 1293-1296.
  • Sousa, C.B., Gangadhar, K.N., Macridachis, J., Pavao, M., Morais, T.R., Campino, L., Varela, J., Lago, J.H.G. (2017). Cystoseira algae (Fucaceae): Update on their chemical entities and biological activities. Tetrahedron: Asymmetry, 28(11), 1486-1505. https://doi.org/10.1016/j.tetasy.2017.10.014
  • Şenol, G., Kirakli, C., Halilçolar, H. (2007). In vitro antibacterial activities of oral care products against ventilator-associated pneumonia pathogens. American Journal of Infection Control, 35(8), 531-535. https://doi.org/10.1016/j.ajic.2006.10.016
  • Varier, K.M., Milton, M.C.J., Arulvasu, C., Gajendran, B. (2013). Evaluation of antibacterial properties of selected red seaweeds from Rameshwaram, Tamil Nadu, India. Journal of Academia and Industrial Research, 1 (11), 667-670.
  • Vehapi, M., İnan, B., Yilmaz, A., Özçimen, D. (2021). Antimicrobial activity of algal extracts against foodborne pathogens. European Journal of Science and Technology, (27), 36-43. https://doi.org/10.31590/ejosat.931091
  • Yegin, S. Ç. (2017). Farklı yörelere ait sumak (Rhus coriaria L.) ekşisinin antioksidan kapasitesinin belirlenmesi. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2(2), 35-39.

Investigation of Antibacterial and Antifungal Effects of Pediastrum boryanum (Turpin) Meneghini

Yıl 2025, Cilt: 6 Sayı: 3, 711 - 720, 31.12.2025
https://doi.org/10.53501/rteufemud.1664536
https://izlik.org/JA92US85YL

Öz

In this study, the antibacterial and antifungal effects of tris-HCL, n-butanol and ethanol extracts of Pediastrum boryanum (Turpin) Meneghini (Synonym Pseudopediastrum boryanum (Turpin) E. Hegewald), cultured from benthic and pelagic habitats of the Yeşilırmak River, on various microorganism species were investigated.
Antimicrobial activity tests were performed on the microorganisms Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 7644, Escherichia coli O 157:H7, Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium CCM 5445, Candida albicans ATCC 10239 by disk diffusion method.
As a result, in antibacterial activity tests, it was determined that the buffer extract of P. boryanum had highly effective antibacterial properties on Listeria monocytogenes ATCC 7644. It was recorded that Escherichia coli O 157:H7 strain was the most susceptible microorganism, while Bacillus subtilis ATCC 6633 strain was the most resistant microorganism; the most effective solvent was 0.5 M Tris-HCL pH: 8.00. In antifungal activity tests, it was seen that the ethanol extract of P. boryanum had highly effective antifungal properties on Candida albicans ATCC 10239.

Kaynakça

  • Al-Wakeel, A. H., Elbahnaswy, S., El‐Moaty, A. A., El-Ghamry, A. M., El-Khateeb, A. Y., Risha, E., Zahran, E. (2024). Green synthesis and characterization of SeNPs using Pediastrum boryanum extract and evaluation of their biological activities. Mansoura Veterinary Medical Journal, 25(1), 1. https://doi.org/10.35943/2682-2512.1229
  • Clinical and Laboratory Standards Institute. (2025). Performance standards for antimicrobial susceptibility testing; 33rd edition. CLSI supplement M100. Wayne, PA: CLSI.
  • Corrêa da Silva, M. G., Pires Ferreira, S., Dora, C. L., Hort, M. A., Giroldo, D., Prates, D. F., Muccillo-Baisch, A. L. (2020). Phenolic compounds and antioxidant capacity of Pediastrum boryanum (Chlorococcales) biomass. International Journal of Environmental Health Research, 32(1), 168–180. https://doi.org/10.1080/09603123.2020.1744113
  • El-Sheekh, M. M., Osman, M. E., Dyab, M. A., Amer, M. S. (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ Toxicol Pharmacol, 21(1), 42-50. https://doi.org/10.1016/j.etap.2005.06.006
  • European Committee on Antimicrobial Susceptibility Testing. (2025). EUCAST clinical breakpoints: Bacteria.
  • Fitton, J. H. (2006). Antiviral properties of marine algae. World seaweed resources. Windows & Macintosch. ETI Information Services, Workingham, UK, 7.
  • Gnanavel, V., Roopan, S. M., Rajeshkumar, S. (2019). Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture, 507, 1–6. https://doi.org/10.1016/j.aquaculture.2019.04.004
  • Guiry, M.D., Guiry, G.M. (2024). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org
  • Koçer, F., Sugeçti, S. (2015). Ticari öneme sahip doğal özütlerin klinik patojen mikroorganizmalara karşı antimikrobiyal aktivitesi. Anadolu Doğa Bilimleri Dergisi, 6, 28-34.
  • Lobban, C.S., Chapman, D.J., Kremer, B.P. (1988). Experimental Phycology A Laboratory Manual, Chambridge Univ.Press, P.2941.
  • Maschek, J. A., Baker, B. J. (2008). The chemistry of algal secondary metabolism. In Algal chemical ecology (pp. 1-24). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Meenakshi, S., Umayaparvathi, S., Arumugam, M., Balasubramanian, T. (2011). In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine, 1(1), 66–70. https://doi.org/10.1016/s2221-1691(11)60126-3
  • Moniharapon, E., Hashinaga, F. (2004). Antimicrobial activity of atung (Parinarium glaberrimum Hassk) fruit extract. Pakistan Journal of Biological Sciences, 7(6), 1057-1061. https://doi.org/10.3923/pjbs.2004.1057.1061
  • Reller, L. B., Weinstein, M., Jorgensen, J. H., Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical infectious diseases, 49(11), 1749-1755. https://doi.org/10.1086/647952
  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1-61. https://doi.org/10.1099/00221287-111-1-1
  • Sadıq B., Butt G. Y., Ajaib M., Usman A., Hussain N., (2016). Evaluation of antibacterial competence of Cladophora glomerata and Lyngbya diguetii. Biologia (Pakistan). 62, 169-172.
  • Saleh, B., Al Mariri, A. (2017). Antimicrobial activity of the marine algal extracts against selected pathogens. Journal of Agricultural Science and Technology, 19, 1067-1077. https://dor.isc.ac/dor/20.1001.1.16807073.2017.19.5.6.9
  • Salvador, S. N., Gómez Garreta, M. A., Lavelli, L., Ribera Siguán, M. A. (2007). Antimicrobial activity of Iberian macroalgae. Scientia Marina, 71, 101-113. https://doi.org/10.3989/scimar.2007.71n1101
  • Sharma, N., Gruszewski, H.A., Park, S.W., Holm, D.G., Vivanco, J.M. (2004). Purification of an isoform of patatin with antimicrobial activity against Phytophthora infestans. Plant Physiology and Biochemistry, 42, 647-655. https://doi.org/10.1016/j.plaphy.2004.05.010
  • Silici S., Koc A.N. (2006). Comparative study of in vitro methods to analyse the antifungal activity of propolis against yeasts isolated from patients with superficial mycoses. Letters in Applied Microbiology, 43(3), 318-324. https://doi.org/10.1111/j.1472-765X.2006.01949.x
  • Soltani, S., Ebrahimzadeh, M. A., Khoshrooei, R., Rahmani, Z. (2012). Antibacterial and antihemolytic activities of Enteromorpha intestinalis in Caspian Sea Coast, Iran. Journal of Medicinal Plants Research, 6(3), 530-533. https://doi.org/10.5897/JMPR11.1462
  • Somnath Chakraborty, S. C., Upasana Ghosh, U. G. (2010). Oceans: a store house of drugs-a review. Journal of Pharmacy Research, 3(6), 1293-1296.
  • Sousa, C.B., Gangadhar, K.N., Macridachis, J., Pavao, M., Morais, T.R., Campino, L., Varela, J., Lago, J.H.G. (2017). Cystoseira algae (Fucaceae): Update on their chemical entities and biological activities. Tetrahedron: Asymmetry, 28(11), 1486-1505. https://doi.org/10.1016/j.tetasy.2017.10.014
  • Şenol, G., Kirakli, C., Halilçolar, H. (2007). In vitro antibacterial activities of oral care products against ventilator-associated pneumonia pathogens. American Journal of Infection Control, 35(8), 531-535. https://doi.org/10.1016/j.ajic.2006.10.016
  • Varier, K.M., Milton, M.C.J., Arulvasu, C., Gajendran, B. (2013). Evaluation of antibacterial properties of selected red seaweeds from Rameshwaram, Tamil Nadu, India. Journal of Academia and Industrial Research, 1 (11), 667-670.
  • Vehapi, M., İnan, B., Yilmaz, A., Özçimen, D. (2021). Antimicrobial activity of algal extracts against foodborne pathogens. European Journal of Science and Technology, (27), 36-43. https://doi.org/10.31590/ejosat.931091
  • Yegin, S. Ç. (2017). Farklı yörelere ait sumak (Rhus coriaria L.) ekşisinin antioksidan kapasitesinin belirlenmesi. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2(2), 35-39.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Algoloji, Hidrobiyoloji, Endüstriyel Mikrobiyoloji
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Demiriz Yücer 0000-0002-2494-4511

Köksal Pabuçcu 0000-0002-4473-8002

Gönderilme Tarihi 27 Mart 2025
Kabul Tarihi 25 Eylül 2025
Yayımlanma Tarihi 31 Aralık 2025
DOI https://doi.org/10.53501/rteufemud.1664536
IZ https://izlik.org/JA92US85YL
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 3

Kaynak Göster

APA Demiriz Yücer, T., & Pabuçcu, K. (2025). Investigation of Antibacterial and Antifungal Effects of Pediastrum boryanum (Turpin) Meneghini. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(3), 711-720. https://doi.org/10.53501/rteufemud.1664536

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025