Araştırma Makalesi
BibTex RIS Kaynak Göster

Eriyikten Üfleme Yöntemiyle Üretilmiş TPU Nanolif Bazlı Hava Filtrasyon Membranlarının Performans Değerlendirmesi

Yıl 2025, Cilt: 6 Sayı: 3, 721 - 732, 31.12.2025
https://doi.org/10.53501/rteufemud.1667529
https://izlik.org/JA76SY96HT

Öz

Artan sanayileşme ve iklim kaynaklı olaylar hava kirliliğini, insan sağlığını tehdit eden önemli çevresel sorunlardan biri hâline getirmiştir. Bu kapsamda, yüksek partikül tutma kapasitesine sahip, düşük basınç kaybı sunan nanolifli filtre malzemeleri, temiz hava elde etmede kritik öneme sahiptir. Bu çalışmada, melt-blowing (MB) yöntemiyle yüksek üretim hızlarında termoplastik poliüretan (TPU) bazlı nanolifli yüzeyler çözücü kullanılmadan üretilmiş ve hava filtrasyonu uygulamaları açısından performansları değerlendirilmiştir. Deneysel çalışmalar, üç farklı seviyede belirlenen besleme hızı (1, 5, 10 rpm), kalıp (nozül) sıcaklığı (220, 240, 260 °C) ve hava basıncı (1, 2, 3 bar) parametreleri doğrultusunda, Taguchi L9 ortogonal deney tasarımı ile gerçekleştirilmiştir. Üretilen nanolifli yüzeylerin morfolojik analizleri taramalı elektron mikroskobu (SEM) ile yapılmıştır. Ortalama lif çapları, filtrasyon verimlilikleri, basınç düşüşleri, hava geçirgenlikleri ve kalite faktörleri karşılaştırılmıştır. 1 rpm besleme hızı, 260 °C nozül sıcaklığı ve 3 bar hava basıncı ile üretilen numune, 423 ± 47 nm ortalama lif çapı ile %82,12 filtrasyon verimliliği ve 95 Pa basınç düşüşü sunarak en iyi performansı göstermiştir. Ayrıca bu numune, uygulanan %5, %10 ve %20 gerinim altında da filtre performansı test edilmiş; en yüksek gerinim seviyesinde dahi %71,44 oranında filtrasyon verimliliği göstererek fonksiyonel dayanıklılığını korumuştur. Elde edilen bulgular, MB yönteminin çevre dostu, hızlı, ölçeklenebilir ve çözücü içermeyen bir üretim süreci olarak TPU esaslı nanolifli hava filtreleri üretiminde önemli bir alternatif sunduğunu ortaya koymaktadır.

Kaynakça

  • Alhussain, H., Ghani, S., & Eltai, N. O. (2024). Breathing Clean Air: Navigating Indoor Air Purification Techniques and Finding the Ideal Solution. International Journal of Environmental Research and Public Health, 21(8), 1107. https://doi.org/10.3390/ijerph21081107
  • Balogh, A., Horváthová, T., Fülöp, Z., Loftsson, T., Harasztos, A. H., Marosi, G., & Nagy, Z. K. (2015). Electroblowing and electrospinning of fibrous diclofenac sodium-cyclodextrin complex-based reconstitution injection. Journal of Drug Delivery Science and Technology, 26, 28–34. https://doi.org/10.1016/j.jddst.2015.02.003
  • Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H., & Bechelany, M. (2019). Nanofiber Technologies: History and Development. In A. Barhoum, M. Bechelany, & A. S. H. Makhlouf (Eds.), Handbook of Nanofibers (pp. 3–43). Springer International Publishing. https://doi.org/10.1007/978-3-319-53655-2_54
  • Becerra Casas, D. S., Reyes Bello, C. F., Rubiano Labrador, J. S., & Fajardo Montaña, O. A. (2020). Portable and Mobile System Connected to a Web Application for the Measurement of Air Quality in the City of Bogotá Associated with Particulate Matter and Meteorological Variables. In J. C. Figueroa-García, F. S. Garay-Rairán, G. J. Hernández-Pérez, & Y. Díaz-Gutierrez (Eds.), Applied Computer Sciences in Engineering (pp. 398–408). Springer International Publishing. https://doi.org/10.1007/978-3-030-61834-6_34
  • Calisir, M. D., Gungor, M., Toptas, A., Donmez, U., Kilic, A., & Karabuga, S. (2022). Clogging performance of micro/nanofibrous laminated composite air filter media. Journal of Industrial Textiles, 52, 15280837221113084. https://doi.org/10.1177/15280837221113084
  • Demina, T. S., Bolbasov, E. N., Peshkova, M. A., Efremov, Y. M., Bikmulina, P. Y., Birdibekova, A. V., Popyrina, T. N., Kosheleva, N. V., Tverdokhlebov, S. I., Timashev, P. S., & Akopova, T. A. (2022). Electrospinning vs. Electro-Assisted Solution Blow Spinning for Fabrication of Fibrous Scaffolds for Tissue Engineering. Polymers, 14(23), Article 23. https://doi.org/10.3390/polym14235254
  • Eticha, A. K., Akgul, Y., Pakolpakcil, A., Unlu, O. K., Cug, H., & Kilic, A. (2024). Fabrication of stretchable and high-filtration performance melt-blown nonwoven webs for PM0.3 aerosol filtration. Journal of Applied Polymer Science, 141(17), e55297. https://doi.org/10.1002/app.55297
  • ETICHA, A., TOPTAŞ, A., AKGÜL, Y., & KILIÇ, A. (2023). Electrically assisted solution blow spinning of PVDF/TPU nanofibrous mats for air filtration applications. Turkish Journal of Chemistry, 47(1), 47–53. https://doi.org/10.55730/1300-0527.3515
  • Feng, T., Sun, Y., Shi, Y., Ma, J., Feng, C., & Chen, Z. (2024). Air pollution control policies and impacts: A review. Renewable and Sustainable Energy Reviews, 191, 114071. https://doi.org/10.1016/j.rser.2023.114071
  • Gungor, M., Toptas, A., Calisir, M. D., & Kilic, A. (2021). Aerosol filtration performance of nanofibrous mats produced via electrically assisted industrial-scale solution blowing. Polymer Engineering & Science, 61(10), 2557–2566. https://doi.org/10.1002/pen.25780
  • Hassan, M. A., Yeom, B. Y., Wilkie, A., Pourdeyhimi, B., & Khan, S. A. (2013). Fabrication of nanofiber meltblown membranes and their filtration properties. Journal of Membrane Science, 427, 336–344. https://doi.org/10.1016/j.memsci.2012.09.050
  • Kilic, A., Selcuk, S., Toptas, A., & Seyhan, A. (2023). Chapter 10—Nonelectro nanofiber spinning techniques. In A. Kargari, T. Matsuura, & M. M. A. Shirazi (Eds.), Electrospun and Nanofibrous Membranes (pp. 267–293). Elsevier. https://doi.org/10.1016/B978-0-12-823032-9.00001-5
  • Lee, Y. E., & Wadsworth, L. C. (2007). Fiber and web formation of melt-blown thermoplastic polyurethane polymers. Journal of Applied Polymer Science, 105(6), 3724–3727. https://doi.org/10.1002/app.26432
  • Lin, X., Sun, W., Lin, M., Chen, T., Duan, K., Lin, H., Zhang, C., & Qi, H. (2024). Bicomponent core/sheath melt-blown fibers for air filtration with ultra-low resistance. RSC Advances, 14(20), 14100–14113. https://doi.org/10.1039/d4ra02174f
  • Nayak, R., Kyratzis, I. L., Truong, Y. B., Padhye, R., & Arnold, L. (2015). Structural and mechanical properties of polypropylene nanofibres fabricated by meltblowing. The Journal of The Textile Institute, 106(6), 629–640. https://doi.org/10.1080/00405000.2014.933512
  • Oktem, H., Erzurumlu, T., & Uzman, I. (2007). Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials & Design, 28(4), 1271–1278. https://doi.org/10.1016/j.matdes.2005.12.013
  • Papa, G., Capitani, G., Pellecchia, M., & Negri, I. (2021). Particulate Matter Contamination of Bee Pollen in an Industrial Area of the Po Valley (Italy). Applied Sciences, 11(23), Article 23. https://doi.org/10.3390/app112311390
  • Pawar, A., Anderson, B., Pourdeyhimi, B., McNulty, A. L., Fisher, M., & Shirwaiker, R. (2024). 3D melt blowing of Elastollan thermoplastic polyurethane for tissue engineering applications: A pilot study. Manufacturing Letters, 41, 357–363. https://doi.org/10.1016/j.mfglet.2024.09.043
  • Soltani, I., & Macosko, C. W. (2018). Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens. Polymer, 145, 21–30. https://doi.org/10.1016/j.polymer.2018.04.051
  • Stojanovska, E., Canbay, E., Serife Pampal, E., D. Calisir, M., Agma, O., Polat, Y., Simsek, R., Serhat Gundogdu, N. A., Akgul, Y., & Kilic, A. (2016). A review on non-electro nanofibre spinning techniques. RSC Advances, 6(87), 83783–83801. https://doi.org/10.1039/C6RA16986D
  • Toptas, A., Calisir, M. D., Gungor, M., & Kilic, A. (2024). Enhancing filtration performance of submicron particle filter media through bimodal structural design. Polymer Engineering & Science, 64(2), 901–912. https://doi.org/10.1002/pen.26593
  • Toptaş, A., Çalışır, M. D., & Kılıç, A. (2023). Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent. ACS Omega, 8(41), 38557–38565. https://doi.org/10.1021/acsomega.3c05509
  • Toptaş, A., Çalışır, M., & Kılıç, A. (2024). Optimization of Electro-Blown PVDF Nanofibrous Mats for Air Filter Applications. El-Cezeri, 11(2), 199–206.
  • Zapletalova, T., Michielsen, S., & Pourdeyhimi, B. (2006). Polyether Based Thermoplastic Polyurethane Melt Blown Nonwovens. Journal of Engineered Fibers and Fabrics, 1(1), 155892500600100105. https://doi.org/10.1177/155892500600100105

Performance Assessment of Meltblown TPU Nanofiber-Based Air Filtration Membranes

Yıl 2025, Cilt: 6 Sayı: 3, 721 - 732, 31.12.2025
https://doi.org/10.53501/rteufemud.1667529
https://izlik.org/JA76SY96HT

Öz

Air pollution has emerged as one of the most pressing environmental challenges, primarily driven by rapid industrialization and climate-related phenomena. Within this context, nanofiber-based filter materials offering high particle capture efficiency and low pressure drop (ΔP) play a crucial role in ensuring access to clean air. In this study, nanofibrous filter surfaces based on thermoplastic polyurethane (TPU) were fabricated via the melt-blowing (MB) technique a solvent-free and high-throughput production method. The experimental design was structured using a Taguchi L9 orthogonal array, considering three processing parameters at three levels each: feeding rate (1, 5, and 10 rpm), die (nozzle) temperature (220, 240, and 260 °C), and air pressure (1, 2, and 3 bar). The morphological characteristics of the produced nanofibers were examined through scanning electron microscopy (SEM). Their AFDs, filtration efficiencies, pressure drops (ΔP), air permeabilities, and quality factors (QFs) were systematically compared. The sample produced under the optimal conditions -1 rpm feeding rate, 260 °C die temperature, and 3 bar air pressure- demonstrated the best performance, achieving a filtration efficiency of 82.12% and a ΔP of 95 Pa, with an average fiber diameter (AFD) of 423 ± 47 nm. Moreover, this optimal sample was subjected to mechanical strain levels of 5%, 10%, and 20%, and successfully preserved its functional integrity, maintaining a filtration efficiency of 71.44% even at 20% elongation. These findings highlight the potential of the melt-blown process as an environmentally friendly, rapid, scalable, and solvent-free method to produce high-performance TPU based nanofibrous air filters.

Kaynakça

  • Alhussain, H., Ghani, S., & Eltai, N. O. (2024). Breathing Clean Air: Navigating Indoor Air Purification Techniques and Finding the Ideal Solution. International Journal of Environmental Research and Public Health, 21(8), 1107. https://doi.org/10.3390/ijerph21081107
  • Balogh, A., Horváthová, T., Fülöp, Z., Loftsson, T., Harasztos, A. H., Marosi, G., & Nagy, Z. K. (2015). Electroblowing and electrospinning of fibrous diclofenac sodium-cyclodextrin complex-based reconstitution injection. Journal of Drug Delivery Science and Technology, 26, 28–34. https://doi.org/10.1016/j.jddst.2015.02.003
  • Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H., & Bechelany, M. (2019). Nanofiber Technologies: History and Development. In A. Barhoum, M. Bechelany, & A. S. H. Makhlouf (Eds.), Handbook of Nanofibers (pp. 3–43). Springer International Publishing. https://doi.org/10.1007/978-3-319-53655-2_54
  • Becerra Casas, D. S., Reyes Bello, C. F., Rubiano Labrador, J. S., & Fajardo Montaña, O. A. (2020). Portable and Mobile System Connected to a Web Application for the Measurement of Air Quality in the City of Bogotá Associated with Particulate Matter and Meteorological Variables. In J. C. Figueroa-García, F. S. Garay-Rairán, G. J. Hernández-Pérez, & Y. Díaz-Gutierrez (Eds.), Applied Computer Sciences in Engineering (pp. 398–408). Springer International Publishing. https://doi.org/10.1007/978-3-030-61834-6_34
  • Calisir, M. D., Gungor, M., Toptas, A., Donmez, U., Kilic, A., & Karabuga, S. (2022). Clogging performance of micro/nanofibrous laminated composite air filter media. Journal of Industrial Textiles, 52, 15280837221113084. https://doi.org/10.1177/15280837221113084
  • Demina, T. S., Bolbasov, E. N., Peshkova, M. A., Efremov, Y. M., Bikmulina, P. Y., Birdibekova, A. V., Popyrina, T. N., Kosheleva, N. V., Tverdokhlebov, S. I., Timashev, P. S., & Akopova, T. A. (2022). Electrospinning vs. Electro-Assisted Solution Blow Spinning for Fabrication of Fibrous Scaffolds for Tissue Engineering. Polymers, 14(23), Article 23. https://doi.org/10.3390/polym14235254
  • Eticha, A. K., Akgul, Y., Pakolpakcil, A., Unlu, O. K., Cug, H., & Kilic, A. (2024). Fabrication of stretchable and high-filtration performance melt-blown nonwoven webs for PM0.3 aerosol filtration. Journal of Applied Polymer Science, 141(17), e55297. https://doi.org/10.1002/app.55297
  • ETICHA, A., TOPTAŞ, A., AKGÜL, Y., & KILIÇ, A. (2023). Electrically assisted solution blow spinning of PVDF/TPU nanofibrous mats for air filtration applications. Turkish Journal of Chemistry, 47(1), 47–53. https://doi.org/10.55730/1300-0527.3515
  • Feng, T., Sun, Y., Shi, Y., Ma, J., Feng, C., & Chen, Z. (2024). Air pollution control policies and impacts: A review. Renewable and Sustainable Energy Reviews, 191, 114071. https://doi.org/10.1016/j.rser.2023.114071
  • Gungor, M., Toptas, A., Calisir, M. D., & Kilic, A. (2021). Aerosol filtration performance of nanofibrous mats produced via electrically assisted industrial-scale solution blowing. Polymer Engineering & Science, 61(10), 2557–2566. https://doi.org/10.1002/pen.25780
  • Hassan, M. A., Yeom, B. Y., Wilkie, A., Pourdeyhimi, B., & Khan, S. A. (2013). Fabrication of nanofiber meltblown membranes and their filtration properties. Journal of Membrane Science, 427, 336–344. https://doi.org/10.1016/j.memsci.2012.09.050
  • Kilic, A., Selcuk, S., Toptas, A., & Seyhan, A. (2023). Chapter 10—Nonelectro nanofiber spinning techniques. In A. Kargari, T. Matsuura, & M. M. A. Shirazi (Eds.), Electrospun and Nanofibrous Membranes (pp. 267–293). Elsevier. https://doi.org/10.1016/B978-0-12-823032-9.00001-5
  • Lee, Y. E., & Wadsworth, L. C. (2007). Fiber and web formation of melt-blown thermoplastic polyurethane polymers. Journal of Applied Polymer Science, 105(6), 3724–3727. https://doi.org/10.1002/app.26432
  • Lin, X., Sun, W., Lin, M., Chen, T., Duan, K., Lin, H., Zhang, C., & Qi, H. (2024). Bicomponent core/sheath melt-blown fibers for air filtration with ultra-low resistance. RSC Advances, 14(20), 14100–14113. https://doi.org/10.1039/d4ra02174f
  • Nayak, R., Kyratzis, I. L., Truong, Y. B., Padhye, R., & Arnold, L. (2015). Structural and mechanical properties of polypropylene nanofibres fabricated by meltblowing. The Journal of The Textile Institute, 106(6), 629–640. https://doi.org/10.1080/00405000.2014.933512
  • Oktem, H., Erzurumlu, T., & Uzman, I. (2007). Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials & Design, 28(4), 1271–1278. https://doi.org/10.1016/j.matdes.2005.12.013
  • Papa, G., Capitani, G., Pellecchia, M., & Negri, I. (2021). Particulate Matter Contamination of Bee Pollen in an Industrial Area of the Po Valley (Italy). Applied Sciences, 11(23), Article 23. https://doi.org/10.3390/app112311390
  • Pawar, A., Anderson, B., Pourdeyhimi, B., McNulty, A. L., Fisher, M., & Shirwaiker, R. (2024). 3D melt blowing of Elastollan thermoplastic polyurethane for tissue engineering applications: A pilot study. Manufacturing Letters, 41, 357–363. https://doi.org/10.1016/j.mfglet.2024.09.043
  • Soltani, I., & Macosko, C. W. (2018). Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens. Polymer, 145, 21–30. https://doi.org/10.1016/j.polymer.2018.04.051
  • Stojanovska, E., Canbay, E., Serife Pampal, E., D. Calisir, M., Agma, O., Polat, Y., Simsek, R., Serhat Gundogdu, N. A., Akgul, Y., & Kilic, A. (2016). A review on non-electro nanofibre spinning techniques. RSC Advances, 6(87), 83783–83801. https://doi.org/10.1039/C6RA16986D
  • Toptas, A., Calisir, M. D., Gungor, M., & Kilic, A. (2024). Enhancing filtration performance of submicron particle filter media through bimodal structural design. Polymer Engineering & Science, 64(2), 901–912. https://doi.org/10.1002/pen.26593
  • Toptaş, A., Çalışır, M. D., & Kılıç, A. (2023). Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent. ACS Omega, 8(41), 38557–38565. https://doi.org/10.1021/acsomega.3c05509
  • Toptaş, A., Çalışır, M., & Kılıç, A. (2024). Optimization of Electro-Blown PVDF Nanofibrous Mats for Air Filter Applications. El-Cezeri, 11(2), 199–206.
  • Zapletalova, T., Michielsen, S., & Pourdeyhimi, B. (2006). Polyether Based Thermoplastic Polyurethane Melt Blown Nonwovens. Journal of Engineered Fibers and Fabrics, 1(1), 155892500600100105. https://doi.org/10.1177/155892500600100105
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanoüretim, Lif Teknolojisi
Bölüm Araştırma Makalesi
Yazarlar

Ali Toptaş 0000-0002-1176-0844

Gönderilme Tarihi 28 Mart 2025
Kabul Tarihi 16 Temmuz 2025
Yayımlanma Tarihi 31 Aralık 2025
DOI https://doi.org/10.53501/rteufemud.1667529
IZ https://izlik.org/JA76SY96HT
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 3

Kaynak Göster

APA Toptaş, A. (2025). Performance Assessment of Meltblown TPU Nanofiber-Based Air Filtration Membranes. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(3), 721-732. https://doi.org/10.53501/rteufemud.1667529

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025