Araştırma Makalesi
BibTex RIS Kaynak Göster

Polilaktik asit Malzeme ile Eriyik Yığma Modellemede Boyutsal Doğruluk ve Üretim Süresi için Parametre Optimizasyonu

Yıl 2024, Cilt: 5 Sayı: 2, 39 - 48, 31.12.2024
https://doi.org/10.53501/rteufemud.1443884

Öz

Savunma, havacılık, otomotiv ve sağlık sektörlerindeki ihtiyaçları karşılayan eklemeli imalat teknolojileri için, boyutsal doğruluk ve üretim süresinin kısalığı önemlidir. Bunun için doğru parametrelerin belirlenmesi, optimize edilmesi ve karar verme süreçlerinde birden fazla hedefin dengelenmesi gerekmektedir. Bu çalışmada, İdeal Çözüme Benzerlik Sırası Tekniğiyle boyutsal doğruluk ve üretim süresi üzerinde farklı üretim parametrelerinin etkisi aynı anda incelenmiştir. Deneylerin tasarlanması için Taguchi yöntemi kullanılmış ve ANYCUBIC 3B yazıcısı ile Polilaktik asit malzemeden ASTM D638 tip 1 standardına uygun çekme numuneleri üretilmiştir. Çalışma için seçilen kontrol faktörleri, dolgu yoğunluğu (% 40, 60, 80), katman kalınlığı (0,2, 0,25, 0,30 mm) ve baskı hızıdır (40, 50, 60 mm/sn). Numunelerin nominal boy, genişlik ve kalınlık değerlerinden sapmalar, boyutsal doğruluk yanıtları olarak kabul edilmiştir. Optimal parametreleri bulmak için ideal çözüme izafi yakınlık değerleri-Ci+ hesaplanmış, Varyans Analizi ve Sinyal/Gürültü analizi kullanılarak analiz edilmiş, Ci+ yı arttırmak için en iyi koşulların %80 dolgu yoğunluğu, 0,30 mm katman kalınlığı ve 40 mm/sn baskı hızı olduğu bulunmuştur. Parametrelerin katkısı sırasıyla %19,5, %20,1 ve %55,7 belirlenmiştir. Son olarak, optimal parametreler kullanılarak bir doğrulama deneyi gerçekleştirilmiştir. Bu deneyde, boydaki sapma 0,41 mm, genişlikteki sapma 0,03 mm ve kalınlıktaki sapma ise 0,07 mm olarak belirlenmiştir. Üretim süresi ise 56 dakika olarak tespit edilmiştir. Ci+ değerinin %44 arttığı gözlemlenmiştir. Bu sonuçlar, optimal parametrelerin kullanılmasıyla eklemeli imalat teknolojilerindeki verimlilik ve kalite artışının mümkün olduğunu açıkça göstererek, sektörde rekabet avantajı sağlamak isteyen şirketlere değerli bir yol haritası sunmaktadır.

Kaynakça

  • Agarwal, K. M., Shubham, P., Bhatia, D., Sharma, P., Vaid, H., Vajpeyi, R. (2022). Analyzing the impact of print parameters on dimensional variation of abs specimens printed using fused deposition modelling (FDM). Sensors International, 3, 100149. https://doi.org/10.1016/j.sintl.2021.100149
  • Anerao, P., Kulkarni, A., Munde, Y., Shinde, A., Das, O. (2023). Biochar reinforced PLA composite for fused deposition modelling (FDM): A parametric study on mechanical performance. Composites Part C: Open Access, 12, 100406. https://doi.org/10.1016/j.jcomc.2023.100406
  • Ansari, A.A. and Kamil, M. (2021). Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Materials Today: Proceedings, 45 (6), 5462-5468. https://doi.org/10.1016/j.matpr.2021.02.137
  • Aslani, K.E., Kitsakis, K., Kechagias, J.D., Vaxevanidis, N.M., Manolakos, D.E. (2020). On theapplication of grey Taguchi method for benchmarking the dimensional accuracy of the PLA fused filament fabrication process. SN Applied Sciences, 2(6), 1-11. https://doi.org/10.1007/s42452-020-2823-z
  • Başçı, Ü.G., Yamanoğlu R. (2021). Yeni nesil üretim teknolojisi: FDM ile eklemeli imalat. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 339-352. https://doi.org/10.46519/ij3dptdi.838281
  • Bolat, Ç., Ergene, B. (2022). An ınvestigation on dimensional accuracy of 3D printed PLA, PET-G and ABS samples with different layer heights. Çukurova Üniversitesi Mühendislik Fakültesi
  • Dey, A. and Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, 3(3), 64. https://doi.org/10.3390/jmmp3030064
  • Doh, J., Kim, S-W., Lee, J. (2017). Reliability assessment on the degradation properties of polymers under operating temperature and vibration conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(13), 1–17. https://doi.org/10.1177/0954407017735263
  • Ersoy, K. (2023). Savunma sanayiinde katmanlı imalat ile tedarik zinciri yönetimi. Makina Tasarım ve İmalat Dergisi, 21(2), 63-73. https://doi.org/10.56193/matim.1270281
  • Equbal, A., Equbal, M.I., Sood, A.K. (2019). PCA-based desirability method for dimensional improvement of part extruded by fused deposition modelling technology. Progress in Additive Manufacturing, 4, 269–280. https://doi.org/10.1007/s40964-018-00072-4
  • Farazin, A. and Mohammadimehr, M. (2022). Effect of different parameters on the tensile properties of printed Polylactic acid samples by FDM: Experimental design tested with MDs simulation. The International Journal of Advanced Manufacturing Technology, 118, 103–118. https://doi.org/10.21203/rs.3.rs-273321/v1
  • Gao, G., Xu, F., Xu, J. (2022a). Effect of testing standard on parameter optimization of fused deposition modelling process. Journal of Physics: Conference Series, 2390 012075. https://doi.org/10.1088/1742-6596/2390/1/012075
  • Gao, G., Xu, F., Xu, J. (2022b). Parametric optimization of FDM process for improving mechanical strengths using taguchi method and response surface method: A comparative investigation. Machines, 10(9), 750. https://doi.org/10.3390/machines10090750
  • İriç, S. (2020). Experimental ınvestigation on effect to the specific strength of FDM fabrication parameters using taguchi method. Sakarya University Journal of Science, 24(5), 984-990. https://doi.org/10.16984/saufenbilder.771389
  • Karakoç B. ve Uzun G. (2023). Ergiyik yığma modelleme yöntemi ile üretilen numunelerde örme yönteminin ve baskı yönünün mukavemete olan etkisi. Politeknik Dergisi, 1-1. https://doi.org/10.2339/politeknik.1262855
  • Kıran, K., Şekerci, B., Urgancı, K.B., Delikanlı, Y.E., Gezgen, B. (2022). Endüstriyel bir 3 boyutlu yazıcı ile imal edilen ABS malzemeli parçaların boyut hatalarının incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(4), 1046-1057. https://doi.org/10.17714/gumusfenbil.1055034
  • Kuruoğlu, Y., Akgün, M., Demir, H. (2022). FDM yöntemiyle üretilen ABS, PLA ve PETG numunelerin yüzey pürüzlülüğü ve çekme dayanımının modellenmesi ve optimizasyonu. Int. J. of 3D Printing Tech. Dig. Ind., 6(3), 358-369. https://doi.org/10.46519/ij3dptdi.1148923
  • Mazlan, M.A., Anas, M.A., Nor Izmin, N.A., Abdullah, A.H.. (2023). Effects of ınfill density, wall perimeter and layer height in fabricating 3D printing products. Materials, 16 (2), 695. https://doi.org/10.3390/ma16020695
  • Medibew, T.M. (2022). A comprehensive review on the optimization of the fused deposition modeling process parameter for better tensile strength of PLA-printed parts. Advances in Materials Science and Engineering, Article ID 5490831. https://doi.org/10.1155/2022/5490831
  • Mendonsa, C., Naveen, K.V., Upadhyaya, P., Shenoy, V.D. (2015). Influence of FDM process parameters on build time using Taguchi and ANOVA approach. International Journal of Science and Research, 4(2), 330-333.
  • Nancharaiah, T. (2011). Optimization of process parameters in FDM process using design of experiments. International Journal on Emerging Technologies, 2(1), 100-102
  • Negrete, C.C. (2020). Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Progress in Additive Manufacturing, 5, 59–65. https://doi.org/10.1007/s40964-020-00115-9
  • Özmen, Ö., Sürmen, H.K., Sezgin, A. (2023). 3 Boyutlu baskıda dolgu biçiminin çekme dayanımına etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 11(1), 336-348. https://doi.org/10.21923/jesd.1095594
  • Rajamani, D., Balasubramanian, E., Yang, L.J. (2022). Enhancing the surface quality of FDM processed flapping wing micro mechanism assembly through RSM–TOPSIS hybrid approach. Processes, 10 (11), 2457. https://doi.org/10.3390/pr10112457
  • Shaikh, A.M. and Salokhe, O.A. (2020). Multi objective optimization of fused deposition modeling parameters for PC/ABS blend material parts using GRA. International Journal of Innovative Technology and Exploring Engineering, 9(3), 1107-1116. http://doi.org/10.35940/ijitee.C8009.019320
  • Shakeria, Z., Benfriha, K., Zirak, N., Shirinbayan, M. (2021). Optimization of FFF processing parameters to improve geometrical accuracy and mechanical behavior of polyamide 6 using grey relational analysis (GRA). Research Square. https://doi.org/10.21203/rs.3.rs-1118150/v1
  • Sharif, A., Khan, H., Bashir, N., Alam, W. (2023). Parametric optimization and evaluating mechanical properties of poly lactic acid proceed by FDM additive manufacturing. Journal of Materials and Manufacturing, 2(1), 11-20. https://doi.org/10.5281/zenodo.8020527
  • Singh, M. and Bharti P.S. (2022). Grey relational analysis based optimization of process parameters for efficientperformance of fused deposition modelling based 3D printer. Journal of Engg. Research, ICMET Special
  • Subhashini, P.V.S. and Sneha, G. (2022). Parametric optimization of fused deposition modeling usingmulti-objective techniques. Journal of Nanotechnology and Smart Materials, 6, 1-15. https://doi.org/10.17303/jnsm.2022.7.105
  • Sumalatha, M., Rao, J.N.M., Reddy, B.S. (2021). Optimization of process parameters ın 3d printing-fused deposition modeling using Taguchi method. IOP Conference Series: Materials Science and Engineering, 1112(1):012009. http://doi.org/10.1088/1757-899X/1112/1/012009
  • Suniya, N.K. and Verma, A.K. (2023). A review on optimization of process parameters of fused deposition modeling. Resesrch Engineering Structures and Materials, 9(2), 631-659. http://dx.doi.org/10.17515/resm2022.520ma0909
  • Syed, M.A.B., Rhaman, Q., Shahriar, H.M., Khan, M.M.A. (2022). Grey-Taguchi approach to optimize fused deposition modeling process in terms of mechanical properties and dimensional accuracy. Journal of Engineering Research, Innovation and Education, 4(1), 38-52.
  • Tunçel, O. (2024). Optimization of charpy ımpact strength of tough PLA samples produced by 3D printing using the Taguchi method. Polymers (Basel), 16(4), 459. https://doi.org/10.3390/polym16040459
  • Tunçel, O. ve Bayraklılar, M.S. (2024). The applıcatıon of the taguchi method for optimizing the compression strength of pla samples produced using FDM. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 133-141. https://doi.org/10.17780/ksujes.1365534
  • Tura, A.D., Mamo, H.B., Rao, D.K. (2021). Study on the effect of fused deposition modelling (FDM) process parameters on tensile strength and their optimal selection. International Journal of Engineering and Artificial Intelligence, 2 (2), 81–91. https://repository.ju.edu.et//handle/123456789/6570
  • URL-1, (2021). https://blog.3dortgen.com/rehber-pla-filament-nedir-ne-degildir, 27.02.2024.
  • Wu, J. (2018). Study on optimization of 3D printing parameters. IOP Conference Series: Materials Science and Engineering, 392(6):062050. https://doi.org/10.1088/1757-899X/392/6/062050
  • Yılmaz, M., Yılmaz, N.F., Kılıç, A., Mazı, H. (2024). Investigation of manufacturability of in-situ crosslinked polylactic acid (PLA) and peroxide composite in additive manufacturing. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2),859-86. https://doi.org/10.17341/gazimmfd.1213974

Parameter Optimization for Dimensional Accuracy and Production Time in Fused Deposition Modeling with Polylactic Acid

Yıl 2024, Cilt: 5 Sayı: 2, 39 - 48, 31.12.2024
https://doi.org/10.53501/rteufemud.1443884

Öz

Dimensional accuracy and short production times are important for additive manufacturing technologies that meet the needs of the defense, aerospace, automotive and healthcare industries. This requires identifying and optimizing the right parameters and balancing multiple objectives in decision-making processes. In this study, the simultaneous impact of various production parameters on dimensional accuracy and production time was examined using the Technique for Order of Preference by Similarity to Ideal Solution. Taguchi method was used to design the experiments and tensile specimens were produced from polylactic acid material in accordance with ASTM638 type 1 standard with ANYCUBIC 3D printer. The control factors selected for the study were infill density (40, 60, 80 %), layer thickness (0.2, 0.25, 0.30 mm) and printing speed (40, 50, 60 mm/s). To find the optimal parameters, relative closeness to the ideal solution–Ci+ values were calculated and analyzed using Analysis of Variance and Signal/Noise analysis, and it was found that the best conditions to increase Ci+ were 80 % infill density, 0.30 mm layer thickness and 40 mm/sec printing speed. The contribution of parameters was determined to be 19.5 %, 20.1 %, and 55.7 %, respectively. Finally, a validation experiment was performed using the optimal parameters and it was observed that the Ci+ value increased by 44 %. These results clearly show that productivity and quality improvements in additive manufacturing technologies are possible with the use of optimal parameters, providing a valuable roadmap for companies that want to gain a competitive advantage in the sector.

Kaynakça

  • Agarwal, K. M., Shubham, P., Bhatia, D., Sharma, P., Vaid, H., Vajpeyi, R. (2022). Analyzing the impact of print parameters on dimensional variation of abs specimens printed using fused deposition modelling (FDM). Sensors International, 3, 100149. https://doi.org/10.1016/j.sintl.2021.100149
  • Anerao, P., Kulkarni, A., Munde, Y., Shinde, A., Das, O. (2023). Biochar reinforced PLA composite for fused deposition modelling (FDM): A parametric study on mechanical performance. Composites Part C: Open Access, 12, 100406. https://doi.org/10.1016/j.jcomc.2023.100406
  • Ansari, A.A. and Kamil, M. (2021). Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Materials Today: Proceedings, 45 (6), 5462-5468. https://doi.org/10.1016/j.matpr.2021.02.137
  • Aslani, K.E., Kitsakis, K., Kechagias, J.D., Vaxevanidis, N.M., Manolakos, D.E. (2020). On theapplication of grey Taguchi method for benchmarking the dimensional accuracy of the PLA fused filament fabrication process. SN Applied Sciences, 2(6), 1-11. https://doi.org/10.1007/s42452-020-2823-z
  • Başçı, Ü.G., Yamanoğlu R. (2021). Yeni nesil üretim teknolojisi: FDM ile eklemeli imalat. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 339-352. https://doi.org/10.46519/ij3dptdi.838281
  • Bolat, Ç., Ergene, B. (2022). An ınvestigation on dimensional accuracy of 3D printed PLA, PET-G and ABS samples with different layer heights. Çukurova Üniversitesi Mühendislik Fakültesi
  • Dey, A. and Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, 3(3), 64. https://doi.org/10.3390/jmmp3030064
  • Doh, J., Kim, S-W., Lee, J. (2017). Reliability assessment on the degradation properties of polymers under operating temperature and vibration conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(13), 1–17. https://doi.org/10.1177/0954407017735263
  • Ersoy, K. (2023). Savunma sanayiinde katmanlı imalat ile tedarik zinciri yönetimi. Makina Tasarım ve İmalat Dergisi, 21(2), 63-73. https://doi.org/10.56193/matim.1270281
  • Equbal, A., Equbal, M.I., Sood, A.K. (2019). PCA-based desirability method for dimensional improvement of part extruded by fused deposition modelling technology. Progress in Additive Manufacturing, 4, 269–280. https://doi.org/10.1007/s40964-018-00072-4
  • Farazin, A. and Mohammadimehr, M. (2022). Effect of different parameters on the tensile properties of printed Polylactic acid samples by FDM: Experimental design tested with MDs simulation. The International Journal of Advanced Manufacturing Technology, 118, 103–118. https://doi.org/10.21203/rs.3.rs-273321/v1
  • Gao, G., Xu, F., Xu, J. (2022a). Effect of testing standard on parameter optimization of fused deposition modelling process. Journal of Physics: Conference Series, 2390 012075. https://doi.org/10.1088/1742-6596/2390/1/012075
  • Gao, G., Xu, F., Xu, J. (2022b). Parametric optimization of FDM process for improving mechanical strengths using taguchi method and response surface method: A comparative investigation. Machines, 10(9), 750. https://doi.org/10.3390/machines10090750
  • İriç, S. (2020). Experimental ınvestigation on effect to the specific strength of FDM fabrication parameters using taguchi method. Sakarya University Journal of Science, 24(5), 984-990. https://doi.org/10.16984/saufenbilder.771389
  • Karakoç B. ve Uzun G. (2023). Ergiyik yığma modelleme yöntemi ile üretilen numunelerde örme yönteminin ve baskı yönünün mukavemete olan etkisi. Politeknik Dergisi, 1-1. https://doi.org/10.2339/politeknik.1262855
  • Kıran, K., Şekerci, B., Urgancı, K.B., Delikanlı, Y.E., Gezgen, B. (2022). Endüstriyel bir 3 boyutlu yazıcı ile imal edilen ABS malzemeli parçaların boyut hatalarının incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(4), 1046-1057. https://doi.org/10.17714/gumusfenbil.1055034
  • Kuruoğlu, Y., Akgün, M., Demir, H. (2022). FDM yöntemiyle üretilen ABS, PLA ve PETG numunelerin yüzey pürüzlülüğü ve çekme dayanımının modellenmesi ve optimizasyonu. Int. J. of 3D Printing Tech. Dig. Ind., 6(3), 358-369. https://doi.org/10.46519/ij3dptdi.1148923
  • Mazlan, M.A., Anas, M.A., Nor Izmin, N.A., Abdullah, A.H.. (2023). Effects of ınfill density, wall perimeter and layer height in fabricating 3D printing products. Materials, 16 (2), 695. https://doi.org/10.3390/ma16020695
  • Medibew, T.M. (2022). A comprehensive review on the optimization of the fused deposition modeling process parameter for better tensile strength of PLA-printed parts. Advances in Materials Science and Engineering, Article ID 5490831. https://doi.org/10.1155/2022/5490831
  • Mendonsa, C., Naveen, K.V., Upadhyaya, P., Shenoy, V.D. (2015). Influence of FDM process parameters on build time using Taguchi and ANOVA approach. International Journal of Science and Research, 4(2), 330-333.
  • Nancharaiah, T. (2011). Optimization of process parameters in FDM process using design of experiments. International Journal on Emerging Technologies, 2(1), 100-102
  • Negrete, C.C. (2020). Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Progress in Additive Manufacturing, 5, 59–65. https://doi.org/10.1007/s40964-020-00115-9
  • Özmen, Ö., Sürmen, H.K., Sezgin, A. (2023). 3 Boyutlu baskıda dolgu biçiminin çekme dayanımına etkisi. Mühendislik Bilimleri ve Tasarım Dergisi, 11(1), 336-348. https://doi.org/10.21923/jesd.1095594
  • Rajamani, D., Balasubramanian, E., Yang, L.J. (2022). Enhancing the surface quality of FDM processed flapping wing micro mechanism assembly through RSM–TOPSIS hybrid approach. Processes, 10 (11), 2457. https://doi.org/10.3390/pr10112457
  • Shaikh, A.M. and Salokhe, O.A. (2020). Multi objective optimization of fused deposition modeling parameters for PC/ABS blend material parts using GRA. International Journal of Innovative Technology and Exploring Engineering, 9(3), 1107-1116. http://doi.org/10.35940/ijitee.C8009.019320
  • Shakeria, Z., Benfriha, K., Zirak, N., Shirinbayan, M. (2021). Optimization of FFF processing parameters to improve geometrical accuracy and mechanical behavior of polyamide 6 using grey relational analysis (GRA). Research Square. https://doi.org/10.21203/rs.3.rs-1118150/v1
  • Sharif, A., Khan, H., Bashir, N., Alam, W. (2023). Parametric optimization and evaluating mechanical properties of poly lactic acid proceed by FDM additive manufacturing. Journal of Materials and Manufacturing, 2(1), 11-20. https://doi.org/10.5281/zenodo.8020527
  • Singh, M. and Bharti P.S. (2022). Grey relational analysis based optimization of process parameters for efficientperformance of fused deposition modelling based 3D printer. Journal of Engg. Research, ICMET Special
  • Subhashini, P.V.S. and Sneha, G. (2022). Parametric optimization of fused deposition modeling usingmulti-objective techniques. Journal of Nanotechnology and Smart Materials, 6, 1-15. https://doi.org/10.17303/jnsm.2022.7.105
  • Sumalatha, M., Rao, J.N.M., Reddy, B.S. (2021). Optimization of process parameters ın 3d printing-fused deposition modeling using Taguchi method. IOP Conference Series: Materials Science and Engineering, 1112(1):012009. http://doi.org/10.1088/1757-899X/1112/1/012009
  • Suniya, N.K. and Verma, A.K. (2023). A review on optimization of process parameters of fused deposition modeling. Resesrch Engineering Structures and Materials, 9(2), 631-659. http://dx.doi.org/10.17515/resm2022.520ma0909
  • Syed, M.A.B., Rhaman, Q., Shahriar, H.M., Khan, M.M.A. (2022). Grey-Taguchi approach to optimize fused deposition modeling process in terms of mechanical properties and dimensional accuracy. Journal of Engineering Research, Innovation and Education, 4(1), 38-52.
  • Tunçel, O. (2024). Optimization of charpy ımpact strength of tough PLA samples produced by 3D printing using the Taguchi method. Polymers (Basel), 16(4), 459. https://doi.org/10.3390/polym16040459
  • Tunçel, O. ve Bayraklılar, M.S. (2024). The applıcatıon of the taguchi method for optimizing the compression strength of pla samples produced using FDM. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 133-141. https://doi.org/10.17780/ksujes.1365534
  • Tura, A.D., Mamo, H.B., Rao, D.K. (2021). Study on the effect of fused deposition modelling (FDM) process parameters on tensile strength and their optimal selection. International Journal of Engineering and Artificial Intelligence, 2 (2), 81–91. https://repository.ju.edu.et//handle/123456789/6570
  • URL-1, (2021). https://blog.3dortgen.com/rehber-pla-filament-nedir-ne-degildir, 27.02.2024.
  • Wu, J. (2018). Study on optimization of 3D printing parameters. IOP Conference Series: Materials Science and Engineering, 392(6):062050. https://doi.org/10.1088/1757-899X/392/6/062050
  • Yılmaz, M., Yılmaz, N.F., Kılıç, A., Mazı, H. (2024). Investigation of manufacturability of in-situ crosslinked polylactic acid (PLA) and peroxide composite in additive manufacturing. Journal of the Faculty of Engineering and Architecture of Gazi University, 39(2),859-86. https://doi.org/10.17341/gazimmfd.1213974
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

İnayet Burcu Toprak 0000-0002-0894-5573

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 27 Şubat 2024
Kabul Tarihi 24 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Toprak, İ. B. (2024). Polilaktik asit Malzeme ile Eriyik Yığma Modellemede Boyutsal Doğruluk ve Üretim Süresi için Parametre Optimizasyonu. Recep Tayyip Erdogan University Journal of Science and Engineering, 5(2), 39-48. https://doi.org/10.53501/rteufemud.1443884

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025