Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 5 Sayı: 2, 60 - 75, 31.12.2024
https://doi.org/10.53501/rteufemud.1471667

Öz

Kaynakça

  • Abraham, D.P., Liu, J., Chen, C.H., Hyung, Y.E., Stoll, M., Elsen, N., MacLaren, S., Twesten, R., Haasch, R., Sammann, E., Petrov, I., Amine, K., Henriksen, G. (2003). Diagnosis of power fade mechanisms in high-power lithium-ion cells. Journal of Power Sources, 119-121, 511-516. https://doi.org/10.1016/S0378-7753(03)00275-1
  • Arai, H., Okada, S., Sakurai, Y., Yamaki, J. (1997). Electrochemical and Thermal Behavior of LiNi1 − z M z O 2 ( M = Co , Mn , Ti ) . Journal of The Electrochemical Society, 144(9), 3117-3125. https://doi.org/10.1149/1.1837968/XML
  • Armstrong, A.R., Bruce, P.G. (1996). Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 381, 499-500. https://doi.org/10.1038/381499a0
  • Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T., Janek, J. (2019). There and back again—the journey of LiNiO2 as a cathode active material. Angewandte Chemie International Edition, 58(31), 10434-10458. https://doi.org/10.1002/ANIE.201812472
  • Caurant, D., Baffier, N., Garcia, B., Pereira-Ramos, J. P. (1996). Synthesis by a soft chemistry route and characterization of LiNixCo1−xO2 (0 ≤ x ≤ 1) cathode materials. Solid State Ionics, 91(1-2), 45-54. https://doi.org/10.1016/S0167-2738(96)00418-3
  • Ceder, G., Chiang, Y.M., Sadoway, D.R., Aydinol, M.K., Jang, Y.I., Huang, B. (1998). Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 392, 694-696. https://doi.org/10.1038/33647
  • Chang, S.H., Kang, S.G., Song, S.W., Yoon, J.B., Choy, J.H. (1996). Crystal structure and spectroscopic properties of LixNi1 − yTiyO2 and their electrochemical behavior. Solid State Ionics, 86-88(1), 171-175. https://doi.org/10.1016/0167-2738(96)00117-8
  • Cho, J., Park, B. (2001). Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. Journal of Power Sources, 92(1-2), 35-39. https://doi.org/10.1016/S0378-7753(00)00499-7
  • Fuchs, B., Kemmler-Sack, S. (1994). Synthesis of LiMnO2 and LiFeO2 in molten Li halides. Solid State Ionics, 68(3-4), 279-285. https://doi.org/10.1016/0167-2738(94)90186-4
  • Gao, C., Zhou, J., Liu, G., Wang, L. (2018). Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries. Applied Surface Science, 433, 35-44. https://doi.org/10.1016/J.APSUSC.2017.10.034
  • Guilmard, M., Croguennec, L., Denux, D., Delmas, C. (2003). Thermal Stability of Lithium Nickel Oxide Derivatives. Part I: Li xNi1.02O2 and LixNi 0.89Al0.16O2 (x = 0.50 and 0.30). Chemistry of Materials, 15(23), 4476-4483. https://doi.org/10.1021/CM030059F/ASSET/IMAGES/LARGE/CM030059FF00012.JPEG
  • Guilmard, M., Rougier, A., Grüne, M., Croguennec, L., Delmas, C. (2003). Effects of aluminum on the structural and electrochemical properties of LiNiO2. Journal of Power Sources, 115(2), 305-314. https://doi.org/10.1016/S0378-7753(03)00012-0
  • Hao, Q., Du, F., Xu, T., Zhou, Q., Cao, H., Fan, Z., Mei, C., Zheng, J. (2022). Evaluation of Nb-Doping on performance of LiNiO2 in wide temperature range. Journal of Electroanalytical Chemistry, 907, 116034. https://doi.org/10.1016/J.JELECHEM.2022.116034
  • Hoppe, R., Brachtel, G., Jansen, M. (1975). Zur Kenntnis der Oxomanganate(III):, Über LiMnO2 und β-NaMnO2 [1]. Zeitschrift für anorganische und allgemeine Chemie, 417(1), 1-10. https://doi.org/10.1002/ZAAC.19754170102
  • Jansen, M., Hoppe, R. (1973). Zur Kenntnis der NaCl-Strukturfamilie: Neue Untersuchungen an Li2MnO3. Zeitschrift für anorganische und allgemeine Chemie, 397(3), 279-289. https://doi.org/10.1002/ZAAC.19733970307
  • Kong, X., Li, D., Fedorovskaya, E. O., Kallio, T., Ren, X. (2021). New insights in Al-doping effects on the LiNiO2 positive electrode material by a sol-gel method. International Journal of Energy Research, 45(7), 10489-10499. https://doi.org/10.1002/ER.6536
  • Kweon, H. J., Kim, S. J., Park, D. G. (2000). Modification of LixNi1−yCoyO2 by applying a surface coating of MgO. Journal of Power Sources, 88(2), 255-261. https://doi.org/10.1016/S0378-7753(00)00368-2
  • Lee, M. H., Kang, Y. J., Myung, S. T., Sun, Y. K. (2004). Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 50(4), 939-948. https://doi.org/10.1016/J.ELECTACTA.2004.07.038
  • Li, W., Currie, J.C. (1997). Morphology Effects on the Electrochemical Performance of LiNi1 − x Co x O 2. Journal of The Electrochemical Society, 144(8), 2773-2779. https://doi.org/10.1149/1.1837894/XML
  • Li, W., Reimers, J.N., Dahn, J.R. (1993). In situ x-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics, 67(1-2), 123-130. https://doi.org/10.1016/0167-2738(93)90317-V
  • Ohzuku, T., Ueda, A., Nagayama, M. (1993). Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. Journal of The Electrochemical Society, 140(7), 1862-1870. https://doi.org/10.1149/1.2220730/XML
  • Phattharasupakun, N., Cormier, M.M.E., Lyle, E., Zsoldos, E., Liu, A., Geng, C., Liu, Y., Li, H., Sawangphruk, M., Dahn, J.R. (2021). Correlating cation mixing with Li kinetics: Electrochemical and Li diffusion measurements on Li-deficient LiNiO2 and Li-excess LiNi0.5Mn0.5O2. Journal of The Electrochemical Society, 168(9), 090535. https://doi.org/10.1149/1945-7111/AC24BA
  • Prado, G., Rougier, A., Fournès, L., Delmas, C. (2000). Electrochemical Behavior of Iron-Substituted Lithium Nickelate. Journal of The Electrochemical Society, 147(8), 2880. https://doi.org/10.1149/1.1393620/XML
  • Prado, G., Suard, E., Fournes, L., Delmas, C. (2000). Cationic distribution in the Li1 − z(Ni1 − yFey)1 + zO2electrode materials. Journal of Materials Chemistry, 10(11), 2553-2560. https://doi.org/10.1039/B002975K
  • Rajammal, K., Sivakumar, D., Duraisamy, N., Ramesh, K., Ramesh, S. (2016). Effect of sintering temperature on structural properties of LiMnPO4 cathode materials obtained by sol–gel method. Journal of Sol-Gel Science and Technology, 80(2), 514-522. https://doi.org/10.1007/S10971-016-4111-3/FIGURES/8
  • Ren, Y., Yamaguchi, R., Uchiyama, T., Orikasa, Y., Watanabe, T., Yamamoto, K., Matsunaga, T., Nishiki, Y., Mitsushima, S., Uchimoto, Y. (2021). The Effect of cation mixing in LiNiO2 toward the oxygen evolution reaction. ChemElectroChem, 8(1), 70-76. https://doi.org/10.1002/CELC.202001207
  • Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. https://doi.org/10.1016/0921-4526(93)90108-I
  • Rossen, E., Jones, C.D.W., Dahn, J.R. (1992). Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics, 57(3-4), 311-318. https://doi.org/10.1016/0167-2738(92)90164-K
  • Rougier, A., Saadoune, I., Gravereau, P., Willmann, P., Delmas, C. (1996). Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials. Solid State Ionics, 90(1-4), 83-90. https://doi.org/10.1016/S0167-2738(96)00370-0
  • Ryu, H. H., Park, G. T., Yoon, C. S., Sun, Y. K. (2019). Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. Journal of Materials Chemistry A, 7(31), 18580-18588. https://doi.org/10.1039/C9TA06402H
  • Shen, L., Du, F., Zhou, Q., Xu, T., Fan, Z., Wen, Y., Wang, J., Wu, J., Zheng, J. (2023). Cobalt-free nickel-rich cathode materials based on Al/Mg co-doping of LiNiO2 for lithium ion battery. Journal of Colloid and Interface Science, 638, 281-290. https://doi.org/10.1016/J.JCIS.2023.01.134
  • Thi Bich Tran, T., Park, E. J., Kim, H. I., Lee, S. H., Jang, H. J., Son, J. T. (2022). High rate performance of Lithium-ion batteries with Co-free LiNiO2 cathode. Materials Letters, 316, 131810. https://doi.org/10.1016/J.MATLET.2022.131810
  • Välikangas, J., Laine, P., Hietaniemi, M., Hu, T., Tynjälä, P., Lassi, U. (2020). Precipitation and calcination of high-capacity LiNiO2 cathode material for lithium-ıon batteries. Applied Sciences, 10(24), 8988. https://doi.org/10.3390/APP10248988
  • Wu, J., Yang, J., Zheng, J., Wang, M., Li, S., Huang, B., Li, Y., Zhu, Q., Chen, Q., Xiao, S., Liu, B. (2023). Co-doping of Al3+ and Ti4+ and electrochemical properties of LiNiO2 cathode materials for lithium-ıon batteries. ChemSusChem, 16(19), e202300607. https://doi.org/10.1002/CSSC.202300607
  • Xu, T., Du, F., Wu, L., Fan, Z., Shen, L., Zheng, J. (2022). Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism. Electrochimica Acta, 417, 140345. https://doi.org/10.1016/J.ELECTACTA.2022.140345
  • Xu, S., Chen, G., Wei, K., Nan, X., Wang, M., Lv, Z., You, J., Ma, Y., Geng, S. (2024). Preparation and Performance of LiNi1-xAlxO2 Electrodes for Low-Temperature Ceramic Fuel Cells. ACS Applied Energy Materials, 7(2), 576-581. https://doi.org/10.1021/acsaem.3c02488
  • Yuwono, R.A., Wang, F.M., Wu, N.L., Chen, Y.C., Chen, H., Chen, J.M., Haw, S.C., Lee, J.F., Xie, R.K., Sheu, H.S., Chang, P.Y., Khotimah, C., Merinda, L., Hsing, R. (2023). Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries. Chemical Engineering Journal, 456, 141065. https://doi.org/10.1016/J.CEJ.2022.141065
  • Zhang, Z.R., Liu, H.S., Gong, Z.L., Yang, Y. (2004). Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials. Journal of Power Sources, 129(1), 101-106. https://doi.org/10.1016/J.JPOWSOUR.2003.11.015
  • Zhang, G., Zhu, Y., Lv, S., Wang, Z., Gao, P. (2023). Enhanced electrochemical performance of LiNiO2 cathode material by precursor preoxidation for lithium-ion batteries. Journal of Alloys and Compounds, 953, 170134. https://doi.org/10.1016/J.JALLCOM.2023.170134

Mn ve Al Eş-Dopinginin LiNiO2 Katot Malzemesi Üzerindeki Fiziksel ve Elektrokimyasal Özelliklerin İncelenmesi

Yıl 2024, Cilt: 5 Sayı: 2, 60 - 75, 31.12.2024
https://doi.org/10.53501/rteufemud.1471667

Öz

Lityum iyon piller (LİP), yüksek enerji yoğunlukları ve uzun ömürleri ile taşınabilir elektronik cihazlarda ve elektrikli araçlarda (EV'ler) yaygın olarak kullanılan elektrokimyasal enerji depolama sistemleridir. Günümüzde en yaygın kullanılan katot materyallerinden biri olan LiNiO2, yüksek kapasite ve enerji yoğunluğu sunmasına rağmen, düşük termal kararlılık, kapasite kaybı ve yüksek voltajda bozulma gibi dezavantajlara sahiptir. Bu dezavantajlar, LİP'lerin güvenliğini ve uzun vadeli performansını olumsuz etkilemektedir. Bu çalışmada, LiNiO2 katot materyalinde Ni bölgelerine %2,5, %5 ve %10 oranlarında Mn ve Al dopantlarının elektrokimyasal performans ve fiziksel özellikleri üzerindeki etkileri sistematik olarak araştırılmıştır. Bir dopand olarak Mn, katot materyalinin kristal yapısını optimize etmek ve Li+ iyonlarının difüzyonunu kolaylaştırarak kapasiteyi ve döngü ömrünü önemli ölçüde arttırmak için tercih edilmişken, Al katot materyalinin döngüsel performansını arttırmak için tercih edilmiştir. Elde edilen bulgular, %2,5 ve %5 Mn ve Al dopinginin sırasıyla 201,01 mAh/g ve 202,09 mAh/g başlangıç kapasiteleri ve %82,79 ve %81,43 kapasite tutma oranları ile LiNiO2 katot materyalinin dezavantajlarını ortadan kaldırmada ve LİP'lerin performansını ve güvenliğini geliştirmede umut vadeden bir yöntem olduğunu göstermektedir. Bu çalışma, LİP'lerin gelecekteki gelişimi için önemli bir temel oluşturacaktır.

Kaynakça

  • Abraham, D.P., Liu, J., Chen, C.H., Hyung, Y.E., Stoll, M., Elsen, N., MacLaren, S., Twesten, R., Haasch, R., Sammann, E., Petrov, I., Amine, K., Henriksen, G. (2003). Diagnosis of power fade mechanisms in high-power lithium-ion cells. Journal of Power Sources, 119-121, 511-516. https://doi.org/10.1016/S0378-7753(03)00275-1
  • Arai, H., Okada, S., Sakurai, Y., Yamaki, J. (1997). Electrochemical and Thermal Behavior of LiNi1 − z M z O 2 ( M = Co , Mn , Ti ) . Journal of The Electrochemical Society, 144(9), 3117-3125. https://doi.org/10.1149/1.1837968/XML
  • Armstrong, A.R., Bruce, P.G. (1996). Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 381, 499-500. https://doi.org/10.1038/381499a0
  • Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T., Janek, J. (2019). There and back again—the journey of LiNiO2 as a cathode active material. Angewandte Chemie International Edition, 58(31), 10434-10458. https://doi.org/10.1002/ANIE.201812472
  • Caurant, D., Baffier, N., Garcia, B., Pereira-Ramos, J. P. (1996). Synthesis by a soft chemistry route and characterization of LiNixCo1−xO2 (0 ≤ x ≤ 1) cathode materials. Solid State Ionics, 91(1-2), 45-54. https://doi.org/10.1016/S0167-2738(96)00418-3
  • Ceder, G., Chiang, Y.M., Sadoway, D.R., Aydinol, M.K., Jang, Y.I., Huang, B. (1998). Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 392, 694-696. https://doi.org/10.1038/33647
  • Chang, S.H., Kang, S.G., Song, S.W., Yoon, J.B., Choy, J.H. (1996). Crystal structure and spectroscopic properties of LixNi1 − yTiyO2 and their electrochemical behavior. Solid State Ionics, 86-88(1), 171-175. https://doi.org/10.1016/0167-2738(96)00117-8
  • Cho, J., Park, B. (2001). Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. Journal of Power Sources, 92(1-2), 35-39. https://doi.org/10.1016/S0378-7753(00)00499-7
  • Fuchs, B., Kemmler-Sack, S. (1994). Synthesis of LiMnO2 and LiFeO2 in molten Li halides. Solid State Ionics, 68(3-4), 279-285. https://doi.org/10.1016/0167-2738(94)90186-4
  • Gao, C., Zhou, J., Liu, G., Wang, L. (2018). Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries. Applied Surface Science, 433, 35-44. https://doi.org/10.1016/J.APSUSC.2017.10.034
  • Guilmard, M., Croguennec, L., Denux, D., Delmas, C. (2003). Thermal Stability of Lithium Nickel Oxide Derivatives. Part I: Li xNi1.02O2 and LixNi 0.89Al0.16O2 (x = 0.50 and 0.30). Chemistry of Materials, 15(23), 4476-4483. https://doi.org/10.1021/CM030059F/ASSET/IMAGES/LARGE/CM030059FF00012.JPEG
  • Guilmard, M., Rougier, A., Grüne, M., Croguennec, L., Delmas, C. (2003). Effects of aluminum on the structural and electrochemical properties of LiNiO2. Journal of Power Sources, 115(2), 305-314. https://doi.org/10.1016/S0378-7753(03)00012-0
  • Hao, Q., Du, F., Xu, T., Zhou, Q., Cao, H., Fan, Z., Mei, C., Zheng, J. (2022). Evaluation of Nb-Doping on performance of LiNiO2 in wide temperature range. Journal of Electroanalytical Chemistry, 907, 116034. https://doi.org/10.1016/J.JELECHEM.2022.116034
  • Hoppe, R., Brachtel, G., Jansen, M. (1975). Zur Kenntnis der Oxomanganate(III):, Über LiMnO2 und β-NaMnO2 [1]. Zeitschrift für anorganische und allgemeine Chemie, 417(1), 1-10. https://doi.org/10.1002/ZAAC.19754170102
  • Jansen, M., Hoppe, R. (1973). Zur Kenntnis der NaCl-Strukturfamilie: Neue Untersuchungen an Li2MnO3. Zeitschrift für anorganische und allgemeine Chemie, 397(3), 279-289. https://doi.org/10.1002/ZAAC.19733970307
  • Kong, X., Li, D., Fedorovskaya, E. O., Kallio, T., Ren, X. (2021). New insights in Al-doping effects on the LiNiO2 positive electrode material by a sol-gel method. International Journal of Energy Research, 45(7), 10489-10499. https://doi.org/10.1002/ER.6536
  • Kweon, H. J., Kim, S. J., Park, D. G. (2000). Modification of LixNi1−yCoyO2 by applying a surface coating of MgO. Journal of Power Sources, 88(2), 255-261. https://doi.org/10.1016/S0378-7753(00)00368-2
  • Lee, M. H., Kang, Y. J., Myung, S. T., Sun, Y. K. (2004). Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 50(4), 939-948. https://doi.org/10.1016/J.ELECTACTA.2004.07.038
  • Li, W., Currie, J.C. (1997). Morphology Effects on the Electrochemical Performance of LiNi1 − x Co x O 2. Journal of The Electrochemical Society, 144(8), 2773-2779. https://doi.org/10.1149/1.1837894/XML
  • Li, W., Reimers, J.N., Dahn, J.R. (1993). In situ x-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics, 67(1-2), 123-130. https://doi.org/10.1016/0167-2738(93)90317-V
  • Ohzuku, T., Ueda, A., Nagayama, M. (1993). Electrochemistry and Structural Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells. Journal of The Electrochemical Society, 140(7), 1862-1870. https://doi.org/10.1149/1.2220730/XML
  • Phattharasupakun, N., Cormier, M.M.E., Lyle, E., Zsoldos, E., Liu, A., Geng, C., Liu, Y., Li, H., Sawangphruk, M., Dahn, J.R. (2021). Correlating cation mixing with Li kinetics: Electrochemical and Li diffusion measurements on Li-deficient LiNiO2 and Li-excess LiNi0.5Mn0.5O2. Journal of The Electrochemical Society, 168(9), 090535. https://doi.org/10.1149/1945-7111/AC24BA
  • Prado, G., Rougier, A., Fournès, L., Delmas, C. (2000). Electrochemical Behavior of Iron-Substituted Lithium Nickelate. Journal of The Electrochemical Society, 147(8), 2880. https://doi.org/10.1149/1.1393620/XML
  • Prado, G., Suard, E., Fournes, L., Delmas, C. (2000). Cationic distribution in the Li1 − z(Ni1 − yFey)1 + zO2electrode materials. Journal of Materials Chemistry, 10(11), 2553-2560. https://doi.org/10.1039/B002975K
  • Rajammal, K., Sivakumar, D., Duraisamy, N., Ramesh, K., Ramesh, S. (2016). Effect of sintering temperature on structural properties of LiMnPO4 cathode materials obtained by sol–gel method. Journal of Sol-Gel Science and Technology, 80(2), 514-522. https://doi.org/10.1007/S10971-016-4111-3/FIGURES/8
  • Ren, Y., Yamaguchi, R., Uchiyama, T., Orikasa, Y., Watanabe, T., Yamamoto, K., Matsunaga, T., Nishiki, Y., Mitsushima, S., Uchimoto, Y. (2021). The Effect of cation mixing in LiNiO2 toward the oxygen evolution reaction. ChemElectroChem, 8(1), 70-76. https://doi.org/10.1002/CELC.202001207
  • Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. https://doi.org/10.1016/0921-4526(93)90108-I
  • Rossen, E., Jones, C.D.W., Dahn, J.R. (1992). Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics, 57(3-4), 311-318. https://doi.org/10.1016/0167-2738(92)90164-K
  • Rougier, A., Saadoune, I., Gravereau, P., Willmann, P., Delmas, C. (1996). Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials. Solid State Ionics, 90(1-4), 83-90. https://doi.org/10.1016/S0167-2738(96)00370-0
  • Ryu, H. H., Park, G. T., Yoon, C. S., Sun, Y. K. (2019). Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. Journal of Materials Chemistry A, 7(31), 18580-18588. https://doi.org/10.1039/C9TA06402H
  • Shen, L., Du, F., Zhou, Q., Xu, T., Fan, Z., Wen, Y., Wang, J., Wu, J., Zheng, J. (2023). Cobalt-free nickel-rich cathode materials based on Al/Mg co-doping of LiNiO2 for lithium ion battery. Journal of Colloid and Interface Science, 638, 281-290. https://doi.org/10.1016/J.JCIS.2023.01.134
  • Thi Bich Tran, T., Park, E. J., Kim, H. I., Lee, S. H., Jang, H. J., Son, J. T. (2022). High rate performance of Lithium-ion batteries with Co-free LiNiO2 cathode. Materials Letters, 316, 131810. https://doi.org/10.1016/J.MATLET.2022.131810
  • Välikangas, J., Laine, P., Hietaniemi, M., Hu, T., Tynjälä, P., Lassi, U. (2020). Precipitation and calcination of high-capacity LiNiO2 cathode material for lithium-ıon batteries. Applied Sciences, 10(24), 8988. https://doi.org/10.3390/APP10248988
  • Wu, J., Yang, J., Zheng, J., Wang, M., Li, S., Huang, B., Li, Y., Zhu, Q., Chen, Q., Xiao, S., Liu, B. (2023). Co-doping of Al3+ and Ti4+ and electrochemical properties of LiNiO2 cathode materials for lithium-ıon batteries. ChemSusChem, 16(19), e202300607. https://doi.org/10.1002/CSSC.202300607
  • Xu, T., Du, F., Wu, L., Fan, Z., Shen, L., Zheng, J. (2022). Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism. Electrochimica Acta, 417, 140345. https://doi.org/10.1016/J.ELECTACTA.2022.140345
  • Xu, S., Chen, G., Wei, K., Nan, X., Wang, M., Lv, Z., You, J., Ma, Y., Geng, S. (2024). Preparation and Performance of LiNi1-xAlxO2 Electrodes for Low-Temperature Ceramic Fuel Cells. ACS Applied Energy Materials, 7(2), 576-581. https://doi.org/10.1021/acsaem.3c02488
  • Yuwono, R.A., Wang, F.M., Wu, N.L., Chen, Y.C., Chen, H., Chen, J.M., Haw, S.C., Lee, J.F., Xie, R.K., Sheu, H.S., Chang, P.Y., Khotimah, C., Merinda, L., Hsing, R. (2023). Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries. Chemical Engineering Journal, 456, 141065. https://doi.org/10.1016/J.CEJ.2022.141065
  • Zhang, Z.R., Liu, H.S., Gong, Z.L., Yang, Y. (2004). Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials. Journal of Power Sources, 129(1), 101-106. https://doi.org/10.1016/J.JPOWSOUR.2003.11.015
  • Zhang, G., Zhu, Y., Lv, S., Wang, Z., Gao, P. (2023). Enhanced electrochemical performance of LiNiO2 cathode material by precursor preoxidation for lithium-ion batteries. Journal of Alloys and Compounds, 953, 170134. https://doi.org/10.1016/J.JALLCOM.2023.170134
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yoğun Maddenin Yapısal Özellikleri, Elektrokimyasal Enerji Depolama ve Dönüşüm
Bölüm Araştırma Makaleleri
Yazarlar

Erdinç Öz 0000-0003-4321-8264

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 21 Nisan 2024
Kabul Tarihi 7 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Öz, E. (2024). Mn ve Al Eş-Dopinginin LiNiO2 Katot Malzemesi Üzerindeki Fiziksel ve Elektrokimyasal Özelliklerin İncelenmesi. Recep Tayyip Erdogan University Journal of Science and Engineering, 5(2), 60-75. https://doi.org/10.53501/rteufemud.1471667

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025