Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Electronic Properties of AlGaSe/GaSe Heterostructure: A Denstiy Functional Study

Yıl 2024, Cilt: 5 Sayı: 2, 93 - 102, 31.12.2024
https://doi.org/10.53501/rteufemud.1498173

Öz

The scientific community has shown significant interest in the field of two-dimensional (2D) materials. Due to the phenomenon of quantum confinement in a specific direction, 2D materials exhibit fascinating properties that are not present in their bulk form. With the emergence of semiconducting 2D materials, there is a wide array of electronic properties to explore, opening up exciting possibilities for the development of next-generation electronics. An emerging class of materials includes the III-VI monochalcogenides, with indium selenide (InSe) and gallium selenide (GaSe) being two prominent members. Unlike transition metal dichalcogenides, researchers have been drawn to investigate the underlying physical phenomena and technological applications of materials with high intrinsic mobility and a direct bandgap at small thicknesses. In this work, we explore the structural and electronic characteristics of AlGaSe/GaSe heterstructure by density functional theory. The GaSe forms a relatively weak bond with the AlGaSe monolayer, exhibiting an adsorption energy of 9.089 meV/atom. It is found that the heterobilayer is energetically favourable, with an interlayer distance of 3.379 Å, indicating a van der Waals (vdW) type interaction. The most stable stacking configuration is confirmed with different deposition sequences. The AlGaSe/GaSe heterostructure exhibits an indirect band gap semiconductor characteristic, with a bandgap value of 1.774 eV. Our findings showcase the exciting possibilities for creating novel two-dimensional nanoelectronic devices using the vdW heterostructure.

Kaynakça

  • Ahmed, S. and Yi, J. (2017). Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors. Nano-Micro Letters, 9(50), 1-23. https://doi.org/10.1007/S40820-017-0152-6
  • Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Son, Y., Strano, M.S., Cooper, V.R., Liang, L., Louie, S.G., Ringe, E., Zhou, W., Kim, S.S., Naik, R.R., Sumpter, B.G., Terrones, H., Xia, F., Wang, Y., Zhu, J., Akinwande, D., Alem, N., Schuller, J.A., Schaak, R.E., Terrones, M., Robinson, J.A. (2015). Recent advances in two-dimensional materials beyond graphene. ACS Nano, 9(12), 11509–11539. https://doi.org/10.1021/acsnano.5b05556
  • Bhuiyan, M.A., Kudrynskyi, Z.R., Mazumder, D., Greener, J. D. G., Makarovsky, O., Mellor, C. J., Vdovin, E.E., Piot, B.A., Lobanova, I.I., Kovalyuk, Z.D., Nazarova, M., Mishchenko, A., Novoselov, K.S., Cao, Y., Eaves, L., Yusa, G., Patanè, A. (2019). Photoquantum hall effect and light-induced charge transfer at the interface of graphene/inse heterostructures. Advanced Functional Materials, 29(3), 1805491. https://doi.org/10.1002/ADFM.201805491
  • Cao, W., Kang, J., Sarkar, D., Liu, W., Banerjee, K. (2015). 2D semiconductor fets - projections and design for sub-10 nm VLSI. IEEE Transactions on Electron Devices, 62(11), 3459–3469. https://doi.org/10.1109/TED.2015.2443039
  • Crowley, J.M., Tahir-Kheli, J., Goddard, W.A. (2016). Resolution of the band gap prediction problem for materials design. Journal of Physical Chemistry Letters, 7(7), 1198–1203. https://doi.org/10.1021/acs.jpclett.5b02870
  • El‐Mahalawy, S.H. and Evans, B.L. (1977). Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2. Physica Status Solidi (b), 79(2), 713–722. https://doi.org/10.1002/PSSB.2220790238
  • Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L. (2014). Electronics based on two-dimensional materials. Nature Nanotechnology, 9(10), 768–779. https://doi.org/10.1038/nnano.2014.207
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., PAsquarello, A., PAulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunıv, A., Umari, P., Wentzcovitch, R.M. (2009). Quantum Espresso: A modular and open-source software project for quantumsimulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502
  • Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/JCC.20495
  • Grimme, S., Hansen, A., Brandenburg, J. G., and Bannwarth, C. (2016). Dispersion-Corrected Mean-Field Electronic Structure Methods. Chemical Reviews, 116(9), 5105–5154. https://doi.org/10.1021/acs.chemrev.5b00533
  • Hu, P., Wang, L., Yoon, M., Zhang, J., Feng, W., Wang, X., Wen, Z., Idrobo, J.C., Miyamoto, Y., Geohegan, D.B., Xiao, K. (2013). Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Letters, 13(4), 1649–1654. https://doi.org/10.1021/nl400107k
  • Jie, W., Chen, X., Li, D., Xie, L., Yu Hui, Y., Ping Lau, S., Cui, X., Hao, J. (2015). Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angewandte Chemie International Edition, 54(4), 1185–1189. https://doi.org/10.1002/ANIE.201409837
  • Jin, H., Li, J., Wang, B., Yu, Y., Wan, L., Xu, F., Dai, Y., Wei, Y., Guo, H. (2016). Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides. Journal of Materials Chemistry C, 4(47), 11253–11260. https://doi.org/10.1039/C6TC04241D
  • Jung, C.S., Shojaei, F., Park, K., Oh, J. Y., Im, H.S., Jang, D. M., Park, J., Kang, H.S. (2015). Red-to-ultraviolet emission tuning of two-dimensional Gallium Sulfide/Selenide. ACS Nano, 9(10), 9585–9593. https://doi.org/10.1021/acsnano.5b04876
  • Liu, Y., Duan, X., Huang, Y., Duan, X. (2018). Two-dimensional transistors beyond graphene and TMDCs. Chemical Society Reviews, 47(16), 6388–6409. https://doi.org/10.1039/C8CS00318A
  • Luo, W., Cao, Y., Hu, P., Cai, K., Feng, Q., Yan, F., Yan, T., Zhang, X., Wang, K. (2015). Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Advanced Optical Materials, 3(10), 1418–1423. https://doi.org/10.1002/ADOM.201500190
  • Methfessel, M. and Paxton, A.T. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. https://doi.org/10.1103/PhysRevB.40.3616
  • Miró, P., Audiffred, M., Heine, T. (2014). An atlas of two-dimensional materials. Chemical Society Reviews, 43(18), 6537–6554. https://doi.org/10.1039/C4CS00102H
  • Monkhorst, H.J. and Pack, J.D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  • Mudd, G.W., Svatek, S.A., Hague, L., Makarovsky, O., Kudrynskyi, Z.R., Mellor, C.J., Beton, P.H., Eaves, L., Novoselov, K.S., Kocalyuk, Z.D., Vdovib, E.E., Marsden, A.J., Wilson, N.R., Patanè, A. (2015). High broad‐band photoresponsivity of mechanically formed InSe–Graphene van der Waals heterostructures. Advanced Materials, 27(25), 3760-3766. https://doi.org/10.1002/ADMA.201500889
  • Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y. (2014). MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005. https://doi.org/10.1002/ADMA.201304138
  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004). Electric field in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
  • Sangwan, V.K. and Hersam, M.C. (2018). Electronic transport in two-dimensional materials. Annual Review of Physical Chemistry, 69(69), 299–325. https://doi.org/10.1146/annurev-physchem-050317-021353
  • Tamalampudi, S.R., Lu, Y.Y., Kumar, U.R., Sankar, R., Liao, C.D., Moorthy, K.B., Cheng, C.H., Chou, F.C., Chen, Y.T. (2014). High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Letters, 14(5), 2800–2806. https://doi.org/10.1021/nl500817g
  • Tonndorf, P., Schwarz, S., Kern, J., Niehues, I., Del Pozo-Zamudio, O., Dmitriev, A.I., Bakhtinov, A.P., Borisenko, D.N., Kolesnikov, N.N., Tartakovskii, A.I. (2017). Single-photon emitters in GaSe. 2D Materials, 4(2), 021010. https://doi.org/10.1088/2053-1583/AA525B
  • Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892
  • Wallace, P.R. (1947). The band theory of graphite. Physical Review, 71(9), 622-634. https://doi.org/10.1103/PhysRev.71.622
  • Wang, F.F., Hu, X.Y., Niu, X.X., Xie, J.Y., Chu, S.S., Gong, Q.H. (2018). Low-dimensional materials-based field-effect transistors. Journal of Materials Chemistry C, 6(5), 924–941. https://doi.org/10.1039/C7TC04819J
  • Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193
  • Wei, W., Dai, Y., Niu, C., Li, X., Ma, Y., Huang, B. (2015). Electronic properties of two-dimensional van der Waals GaS/GaSe heterostructures. Journal of Materials Chemistry C, 3(43), 11548–11554. https://doi.org/10.1039/C5TC02975A
  • Zhang, W. X., Hou, J. T., Bai, M., He, C., Wen, J. R. (2023). Construction of novel ZnO/Ga2SSe (GaSe) vdW heterostructures as efficient catalysts for water splitting. Applied Surface Science, 634, 157648. https://doi.org/10.1016/J.APSUSC.2023.157648
  • Zhou, J., Shi, J., Zeng, Q., Chen, Y., Niu, L., Liu, F., Yu, T., Suenaga, K., Liu, X., Lin, J. (2018). InSe monolayer: Synthesis, structure and ultra-high second-harmonic generation. 2D Materials, 5(2), 025019. https://doi.org/10.1088/2053-1583/AAB390
  • Zhuang, H.L and Hennig, R.G. (2013). Computational search for single-layer transition-metal dichalcogenide photocatalysts. Journal of Physical Chemistry C, 117(40), 20440–20445. https://doi.org/10.1021/jp405808a

AlGaSe/GaSe Heteroyapısının Elektronik Özelliklerinin İncelenmesi: Yoğunluk Fonksiyonel Çalışması

Yıl 2024, Cilt: 5 Sayı: 2, 93 - 102, 31.12.2024
https://doi.org/10.53501/rteufemud.1498173

Öz

Bilim camiası iki boyutlu (2D) malzemeler alanına büyük ilgi göstermiştir. Belirli bir yönde kuantum kısıtlaması nedeniyle, 2D malzemeler yığın formlarında bulunmayan büyüleyici özellikler sergiler. Yarı iletken 2D malzemelerin ortaya çıkmasıyla birlikte, keşfedilecek çok çeşitli elektronik özellikler ortaya çıkmakta ve bu da yeni nesil elektronik cihazların geliştirilmesi için heyecan verici olanaklar sunmaktadır. Bu bağlamda ortaya çıkan bir malzeme sınıfıda III-VI monokalsojenidleri (InSe; indiyum selenid ve GaSe; galyum selenid) olmuştur. Geçiş metal dikalkojenitlerin aksine, araştırmacılar III-VI monokalsojenidlerin yüksek içsel hareketliliğe ve küçük kalınlıklarda doğrudan bant aralığına sahip olmalarından dolayı teknolojik uygulamaları bu malzeme sınıfını araştırmaya yönelmiştir. Dolayısıyla bu çalışmada, AlGaSe/GaSe heteroyapısının yapısal ve elektronik özelliklerini yoğunluk fonksiyonel teorisi ile araştırıyoruz. GaSe, AlGaSe tek tabakası ile nispeten zayıf bir bağ oluşturmakta ve 9,089 meV/atom adsorpsiyon enerjisi sergilemektedir. AlGaSe/GaSe heteroyapısının van der Waals (vdW) tipi bir etkileşimi gösteren 3.379 Å'luk bir ara katman mesafesi ile enerjik olarak elverişli olduğu bulunmuştur. En kararlı istifleme konfigürasyonu farklı biriktirme dizileri ile doğrulanmıştır. AlGaSe/GaSe heteroyapısı, 1.774 eV bant aralığı değeri ile dolaylı bir bant aralığı yarı iletken özelliği sergilemektedir. Bulgularımız, vdW AlGaSe/GaSe heteroyapısını kullanarak yeni iki boyutlu nanoelektronik cihazlar oluşturmak için heyecan verici olasılıkları ortaya koymaktadır.

Kaynakça

  • Ahmed, S. and Yi, J. (2017). Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors. Nano-Micro Letters, 9(50), 1-23. https://doi.org/10.1007/S40820-017-0152-6
  • Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Son, Y., Strano, M.S., Cooper, V.R., Liang, L., Louie, S.G., Ringe, E., Zhou, W., Kim, S.S., Naik, R.R., Sumpter, B.G., Terrones, H., Xia, F., Wang, Y., Zhu, J., Akinwande, D., Alem, N., Schuller, J.A., Schaak, R.E., Terrones, M., Robinson, J.A. (2015). Recent advances in two-dimensional materials beyond graphene. ACS Nano, 9(12), 11509–11539. https://doi.org/10.1021/acsnano.5b05556
  • Bhuiyan, M.A., Kudrynskyi, Z.R., Mazumder, D., Greener, J. D. G., Makarovsky, O., Mellor, C. J., Vdovin, E.E., Piot, B.A., Lobanova, I.I., Kovalyuk, Z.D., Nazarova, M., Mishchenko, A., Novoselov, K.S., Cao, Y., Eaves, L., Yusa, G., Patanè, A. (2019). Photoquantum hall effect and light-induced charge transfer at the interface of graphene/inse heterostructures. Advanced Functional Materials, 29(3), 1805491. https://doi.org/10.1002/ADFM.201805491
  • Cao, W., Kang, J., Sarkar, D., Liu, W., Banerjee, K. (2015). 2D semiconductor fets - projections and design for sub-10 nm VLSI. IEEE Transactions on Electron Devices, 62(11), 3459–3469. https://doi.org/10.1109/TED.2015.2443039
  • Crowley, J.M., Tahir-Kheli, J., Goddard, W.A. (2016). Resolution of the band gap prediction problem for materials design. Journal of Physical Chemistry Letters, 7(7), 1198–1203. https://doi.org/10.1021/acs.jpclett.5b02870
  • El‐Mahalawy, S.H. and Evans, B.L. (1977). Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2. Physica Status Solidi (b), 79(2), 713–722. https://doi.org/10.1002/PSSB.2220790238
  • Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L. (2014). Electronics based on two-dimensional materials. Nature Nanotechnology, 9(10), 768–779. https://doi.org/10.1038/nnano.2014.207
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., PAsquarello, A., PAulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunıv, A., Umari, P., Wentzcovitch, R.M. (2009). Quantum Espresso: A modular and open-source software project for quantumsimulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502
  • Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787–1799. https://doi.org/10.1002/JCC.20495
  • Grimme, S., Hansen, A., Brandenburg, J. G., and Bannwarth, C. (2016). Dispersion-Corrected Mean-Field Electronic Structure Methods. Chemical Reviews, 116(9), 5105–5154. https://doi.org/10.1021/acs.chemrev.5b00533
  • Hu, P., Wang, L., Yoon, M., Zhang, J., Feng, W., Wang, X., Wen, Z., Idrobo, J.C., Miyamoto, Y., Geohegan, D.B., Xiao, K. (2013). Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Letters, 13(4), 1649–1654. https://doi.org/10.1021/nl400107k
  • Jie, W., Chen, X., Li, D., Xie, L., Yu Hui, Y., Ping Lau, S., Cui, X., Hao, J. (2015). Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets. Angewandte Chemie International Edition, 54(4), 1185–1189. https://doi.org/10.1002/ANIE.201409837
  • Jin, H., Li, J., Wang, B., Yu, Y., Wan, L., Xu, F., Dai, Y., Wei, Y., Guo, H. (2016). Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides. Journal of Materials Chemistry C, 4(47), 11253–11260. https://doi.org/10.1039/C6TC04241D
  • Jung, C.S., Shojaei, F., Park, K., Oh, J. Y., Im, H.S., Jang, D. M., Park, J., Kang, H.S. (2015). Red-to-ultraviolet emission tuning of two-dimensional Gallium Sulfide/Selenide. ACS Nano, 9(10), 9585–9593. https://doi.org/10.1021/acsnano.5b04876
  • Liu, Y., Duan, X., Huang, Y., Duan, X. (2018). Two-dimensional transistors beyond graphene and TMDCs. Chemical Society Reviews, 47(16), 6388–6409. https://doi.org/10.1039/C8CS00318A
  • Luo, W., Cao, Y., Hu, P., Cai, K., Feng, Q., Yan, F., Yan, T., Zhang, X., Wang, K. (2015). Gate tuning of high-performance InSe-based photodetectors using graphene electrodes. Advanced Optical Materials, 3(10), 1418–1423. https://doi.org/10.1002/ADOM.201500190
  • Methfessel, M. and Paxton, A.T. (1989). High-precision sampling for Brillouin-zone integration in metals. Physical Review B, 40(6), 3616-3621. https://doi.org/10.1103/PhysRevB.40.3616
  • Miró, P., Audiffred, M., Heine, T. (2014). An atlas of two-dimensional materials. Chemical Society Reviews, 43(18), 6537–6554. https://doi.org/10.1039/C4CS00102H
  • Monkhorst, H.J. and Pack, J.D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  • Mudd, G.W., Svatek, S.A., Hague, L., Makarovsky, O., Kudrynskyi, Z.R., Mellor, C.J., Beton, P.H., Eaves, L., Novoselov, K.S., Kocalyuk, Z.D., Vdovib, E.E., Marsden, A.J., Wilson, N.R., Patanè, A. (2015). High broad‐band photoresponsivity of mechanically formed InSe–Graphene van der Waals heterostructures. Advanced Materials, 27(25), 3760-3766. https://doi.org/10.1002/ADMA.201500889
  • Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y. (2014). MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005. https://doi.org/10.1002/ADMA.201304138
  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004). Electric field in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
  • Sangwan, V.K. and Hersam, M.C. (2018). Electronic transport in two-dimensional materials. Annual Review of Physical Chemistry, 69(69), 299–325. https://doi.org/10.1146/annurev-physchem-050317-021353
  • Tamalampudi, S.R., Lu, Y.Y., Kumar, U.R., Sankar, R., Liao, C.D., Moorthy, K.B., Cheng, C.H., Chou, F.C., Chen, Y.T. (2014). High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Letters, 14(5), 2800–2806. https://doi.org/10.1021/nl500817g
  • Tonndorf, P., Schwarz, S., Kern, J., Niehues, I., Del Pozo-Zamudio, O., Dmitriev, A.I., Bakhtinov, A.P., Borisenko, D.N., Kolesnikov, N.N., Tartakovskii, A.I. (2017). Single-photon emitters in GaSe. 2D Materials, 4(2), 021010. https://doi.org/10.1088/2053-1583/AA525B
  • Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892
  • Wallace, P.R. (1947). The band theory of graphite. Physical Review, 71(9), 622-634. https://doi.org/10.1103/PhysRev.71.622
  • Wang, F.F., Hu, X.Y., Niu, X.X., Xie, J.Y., Chu, S.S., Gong, Q.H. (2018). Low-dimensional materials-based field-effect transistors. Journal of Materials Chemistry C, 6(5), 924–941. https://doi.org/10.1039/C7TC04819J
  • Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193
  • Wei, W., Dai, Y., Niu, C., Li, X., Ma, Y., Huang, B. (2015). Electronic properties of two-dimensional van der Waals GaS/GaSe heterostructures. Journal of Materials Chemistry C, 3(43), 11548–11554. https://doi.org/10.1039/C5TC02975A
  • Zhang, W. X., Hou, J. T., Bai, M., He, C., Wen, J. R. (2023). Construction of novel ZnO/Ga2SSe (GaSe) vdW heterostructures as efficient catalysts for water splitting. Applied Surface Science, 634, 157648. https://doi.org/10.1016/J.APSUSC.2023.157648
  • Zhou, J., Shi, J., Zeng, Q., Chen, Y., Niu, L., Liu, F., Yu, T., Suenaga, K., Liu, X., Lin, J. (2018). InSe monolayer: Synthesis, structure and ultra-high second-harmonic generation. 2D Materials, 5(2), 025019. https://doi.org/10.1088/2053-1583/AAB390
  • Zhuang, H.L and Hennig, R.G. (2013). Computational search for single-layer transition-metal dichalcogenide photocatalysts. Journal of Physical Chemistry C, 117(40), 20440–20445. https://doi.org/10.1021/jp405808a
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yoğun Madde Modellemesi ve Yoğunluk Fonksiyonel Teorisi, Yoğun Maddenin Elektronik ve Manyetik Özellikleri; Süperiletkenlik, Yoğun Maddenin Yapısal Özellikleri
Bölüm Araştırma Makaleleri
Yazarlar

Celal Yelgel 0000-0003-4164-477X

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Haziran 2024
Kabul Tarihi 17 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Yelgel, C. (2024). Investigation of Electronic Properties of AlGaSe/GaSe Heterostructure: A Denstiy Functional Study. Recep Tayyip Erdogan University Journal of Science and Engineering, 5(2), 93-102. https://doi.org/10.53501/rteufemud.1498173

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025