Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 1765 - 1769, 01.12.2018
https://doi.org/10.16984/saufenbilder.410044

Öz

 

Kaynakça

  • Referans1: Bayram, B., Arslan, K. and Bulca, B., Generalized Spherical Surfaces in E⁴. Honam Mathematical J. 39 (2017), No. 3, 363-377.
  • Referans2: Bulca, B. and Arslan, K., Surfaces Given with the Monge Patch in E⁴, Journal of Mathematical Physics, Analysis, Geom., 9 (2013), 435-447.
  • Referans3: Chen, B.Y., Pseudo-umbilical surfaces with constant Gauss curvature, Proceedings of the Edinburgh Mathematical Society (Series 2), 18(2) (1972), 143-148.
  • Referans4: Chen, B.Y., Geometry of Submanifolds. Dekker, New York, 1973.
  • Referans5: Cipriani, N., Senovilla, J.M.M. and Veken, J.V.D., Umbilical Properties of Spacelike co-dimension two Submanifolds, Results Math. (2017), Online First. DOI 10.1007/s00025-016-0640-x.
  • Referans6: Do Carmo, M., Cheung, L.F. and Santos, W., On the compactness of constant mean curvature hypersurfaces with finite total curvature. Arch. Math. 73 (1999), 216-222.
  • Referans7: Enomoto, K., Umbilical Points on Surfaces in Rⁿ, Nagoya Math. J.,100 (1985), 135-143.

On Total Shear Curvature of Surfaces in E^{n+2}

Yıl 2018, , 1765 - 1769, 01.12.2018
https://doi.org/10.16984/saufenbilder.410044

Öz

In the present study we consider surfaces in Euclidean (n+2)-space Eⁿ⁺². Firstly, we introduce some basic concepts of second fundamental form and curvatures of the surfaces in Eⁿ⁺². Further, we obtained some basic properties of surfaces in Eⁿ⁺² and some results related with their total shear curvatures. Finally, we give an example of generalized spherical surfaces in Euclidean 4-space E⁴ with vanishing shear curvature.

Kaynakça

  • Referans1: Bayram, B., Arslan, K. and Bulca, B., Generalized Spherical Surfaces in E⁴. Honam Mathematical J. 39 (2017), No. 3, 363-377.
  • Referans2: Bulca, B. and Arslan, K., Surfaces Given with the Monge Patch in E⁴, Journal of Mathematical Physics, Analysis, Geom., 9 (2013), 435-447.
  • Referans3: Chen, B.Y., Pseudo-umbilical surfaces with constant Gauss curvature, Proceedings of the Edinburgh Mathematical Society (Series 2), 18(2) (1972), 143-148.
  • Referans4: Chen, B.Y., Geometry of Submanifolds. Dekker, New York, 1973.
  • Referans5: Cipriani, N., Senovilla, J.M.M. and Veken, J.V.D., Umbilical Properties of Spacelike co-dimension two Submanifolds, Results Math. (2017), Online First. DOI 10.1007/s00025-016-0640-x.
  • Referans6: Do Carmo, M., Cheung, L.F. and Santos, W., On the compactness of constant mean curvature hypersurfaces with finite total curvature. Arch. Math. 73 (1999), 216-222.
  • Referans7: Enomoto, K., Umbilical Points on Surfaces in Rⁿ, Nagoya Math. J.,100 (1985), 135-143.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Kadri Arslan

Betül Bulca

Yayımlanma Tarihi 1 Aralık 2018
Gönderilme Tarihi 27 Mart 2018
Kabul Tarihi 29 Mayıs 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Arslan, K., & Bulca, B. (2018). On Total Shear Curvature of Surfaces in E^{n+2}. Sakarya University Journal of Science, 22(6), 1765-1769. https://doi.org/10.16984/saufenbilder.410044
AMA Arslan K, Bulca B. On Total Shear Curvature of Surfaces in E^{n+2}. SAUJS. Aralık 2018;22(6):1765-1769. doi:10.16984/saufenbilder.410044
Chicago Arslan, Kadri, ve Betül Bulca. “On Total Shear Curvature of Surfaces in E^{n+2}”. Sakarya University Journal of Science 22, sy. 6 (Aralık 2018): 1765-69. https://doi.org/10.16984/saufenbilder.410044.
EndNote Arslan K, Bulca B (01 Aralık 2018) On Total Shear Curvature of Surfaces in E^{n+2}. Sakarya University Journal of Science 22 6 1765–1769.
IEEE K. Arslan ve B. Bulca, “On Total Shear Curvature of Surfaces in E^{n+2}”, SAUJS, c. 22, sy. 6, ss. 1765–1769, 2018, doi: 10.16984/saufenbilder.410044.
ISNAD Arslan, Kadri - Bulca, Betül. “On Total Shear Curvature of Surfaces in E^{n+2}”. Sakarya University Journal of Science 22/6 (Aralık 2018), 1765-1769. https://doi.org/10.16984/saufenbilder.410044.
JAMA Arslan K, Bulca B. On Total Shear Curvature of Surfaces in E^{n+2}. SAUJS. 2018;22:1765–1769.
MLA Arslan, Kadri ve Betül Bulca. “On Total Shear Curvature of Surfaces in E^{n+2}”. Sakarya University Journal of Science, c. 22, sy. 6, 2018, ss. 1765-9, doi:10.16984/saufenbilder.410044.
Vancouver Arslan K, Bulca B. On Total Shear Curvature of Surfaces in E^{n+2}. SAUJS. 2018;22(6):1765-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.