Araştırma Makalesi
BibTex RIS Kaynak Göster

Probabilistic Slope Stability Analysis: A Case Study

Yıl 2018, , 1458 - 1465, 01.10.2018
https://doi.org/10.16984/saufenbilder.430032

Öz

Probabilistic slope stability
analyses are becoming more and more popular to evaluate the safety level of
slopes and the associated risk and reliability, especially in the recent years.
Probabilistic approach can take into account the uncertainties and natural variability
in material properties, as well as in environmental factors, by using various statistical
distribution fuctions (such as normal, lognormal etc.) for random variables. It
is already noted by various researchers that, a slope with a deterministic
factor of safety larger than 1.00 using average values of soil parameters may
have a significant level of probability of failure, if the material properties
are unknown, or contain significant uncertainty/variability. In this
study,
a well-documented landslide case study is used to demonstrate the importance of
probabilistic approach in slope stability; to investigate the effects of
considering variabiliy in material properties; and to compare deterministic and
probabilistic slope stability analyses results.
Deterministic limit
eqilibrium, probabilistic limit equilibrium and probabilistic finite element
analyses are conducted for Lodalen landslide in Oslo, Norway and the results
are compared with each other. The factor of safety, the p
robability
of failure and the most critical failure surface are investigated with and
without statistical cross-correlation of soil’s shear strength parameters. The
results of this study can provide further insights into the comparison of
deterministic and probabilistic approaches in slope safety.

Kaynakça

  • [1] R. A. Sevaldson, “The slide in Lodalen, October 6th, 1954”, Geotechnique, vol. 6, no.4, pp. 167-182, 1956.
  • [2] H. El-Ramly, N.R. Morgenstern, and D.M. Cruden, “Lodalen slide: a probabilistic assessment”, Canadian Geotechnical Journal, vol. 43, no.9, pp. 956-968, 2006.
  • [3] G. Bhattacharya, D. Jana, S. Ojha and S. Chakraborty “Direct search for minimum reliability of earth slopes.” Computers and Geotechnics, Vol. 30, Issue 6, pp. 455-462, 2003.
  • [4] H. El-Ramly, N. R. Morgenstern, D. M. Cruden, “Probabilistic assessment of a cut slope in residual soil”, Geotechnique, vol. 55, pp.77-84, 2005.
  • [5] R. E. Hammah, T. E. Yacoub and J. H. Curran, “Probabilistic Slope Analysis with the Finite Element Method”, Asheville 2009, North Carolina, U.S.A., 2009.
  • [6] S. E. Cho, “Probabilistic stability analyses of slopes using the ANN-based response surface.” Computers and Geotechnics, Vol. 36, No. 5, pp. 787-797, 2009.
  • [7] B. Akbas and N. Huvaj, “Probabilistic Slope Stability Analyses Using Limit Equilibrium and Finite Element Methods”, Proc. 5th International Conference on Geotechnical Safety and Risk, Eds. Schweckendiek et al., Rotterdam, the Netherlands, 2015.
  • [8] S. Javankhoshdel, S. and R. J. Bathurst, "Deterministic and probabilistic failure analysis of simple geosynthetic reinforced soil slopes." Geosynthetics International, v. 24(1), 14-29, 2016.
  • [9] E. A. Oguz, Y. Yalcin, and N. Huvaj, “Probabilistic Slope Stability Analyses: Effects of the Coefficient of Variation and the Cross-Correlation of Shear Strength Parameters”, Proc. of Geotechnical Frontiers Conference, ASCE GeoInstitute, 12-15 March 2017, Orlando, Florida, 2017.
  • [10] P. Lumb, “Safety factors and the probability distribution of soil strength.” Canadian Geotechnical Journal, 7(3), 225–242, 1970.
  • [11] T. H. Wolff, “Analysis and design of embankment dam slopes: A probabilistic approach”, Ph.D. thesis, Purdue University, Lafayette, Ind. 1985.
  • [12] E. Spencer, “A method of analyses of the stability of embankment assuming inter-slice forces”, Geotechnique, vol. 17, pp. 11-26, 1967.
  • [13] S. E. Cho, “Probabilistic Assessment of Slope Stability That Considers the Spatial Variability of Soil Properties.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, Issue 7, pp. 975-984, 2010.
  • [14] T. M. H. Le, M. Sanchez, D. Gallipoli and S. Wheeler, “Probabilistic modelling of autocorrelation characteristics of heterogeneous slopes.” Geomechanics and Geoengineering, Vol. 10, Issue 2, pp. 95-108, 2014.
  • [15] D. V. Griffiths and G. A. Fenton, “Probabilistic Slope Stability Analysis by Finite Elements.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, Issue 5, pp. 507-518, 2004.
  • [16] M. Tabarroki, F. Ahmad, R. Banaki, S. Jha and J. Ching, “Determining the factors of safety of spatially variable slopes modeled by random fields.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, Issue 12, pp. 2082-2095, 2013.
  • [17] S. H. Jiang, D. Q. Li, Z. J. Cao, C. B. Zhou and K. K. Phoon, “Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, Issue 2, 04014096, 2014.
Yıl 2018, , 1458 - 1465, 01.10.2018
https://doi.org/10.16984/saufenbilder.430032

Öz

Kaynakça

  • [1] R. A. Sevaldson, “The slide in Lodalen, October 6th, 1954”, Geotechnique, vol. 6, no.4, pp. 167-182, 1956.
  • [2] H. El-Ramly, N.R. Morgenstern, and D.M. Cruden, “Lodalen slide: a probabilistic assessment”, Canadian Geotechnical Journal, vol. 43, no.9, pp. 956-968, 2006.
  • [3] G. Bhattacharya, D. Jana, S. Ojha and S. Chakraborty “Direct search for minimum reliability of earth slopes.” Computers and Geotechnics, Vol. 30, Issue 6, pp. 455-462, 2003.
  • [4] H. El-Ramly, N. R. Morgenstern, D. M. Cruden, “Probabilistic assessment of a cut slope in residual soil”, Geotechnique, vol. 55, pp.77-84, 2005.
  • [5] R. E. Hammah, T. E. Yacoub and J. H. Curran, “Probabilistic Slope Analysis with the Finite Element Method”, Asheville 2009, North Carolina, U.S.A., 2009.
  • [6] S. E. Cho, “Probabilistic stability analyses of slopes using the ANN-based response surface.” Computers and Geotechnics, Vol. 36, No. 5, pp. 787-797, 2009.
  • [7] B. Akbas and N. Huvaj, “Probabilistic Slope Stability Analyses Using Limit Equilibrium and Finite Element Methods”, Proc. 5th International Conference on Geotechnical Safety and Risk, Eds. Schweckendiek et al., Rotterdam, the Netherlands, 2015.
  • [8] S. Javankhoshdel, S. and R. J. Bathurst, "Deterministic and probabilistic failure analysis of simple geosynthetic reinforced soil slopes." Geosynthetics International, v. 24(1), 14-29, 2016.
  • [9] E. A. Oguz, Y. Yalcin, and N. Huvaj, “Probabilistic Slope Stability Analyses: Effects of the Coefficient of Variation and the Cross-Correlation of Shear Strength Parameters”, Proc. of Geotechnical Frontiers Conference, ASCE GeoInstitute, 12-15 March 2017, Orlando, Florida, 2017.
  • [10] P. Lumb, “Safety factors and the probability distribution of soil strength.” Canadian Geotechnical Journal, 7(3), 225–242, 1970.
  • [11] T. H. Wolff, “Analysis and design of embankment dam slopes: A probabilistic approach”, Ph.D. thesis, Purdue University, Lafayette, Ind. 1985.
  • [12] E. Spencer, “A method of analyses of the stability of embankment assuming inter-slice forces”, Geotechnique, vol. 17, pp. 11-26, 1967.
  • [13] S. E. Cho, “Probabilistic Assessment of Slope Stability That Considers the Spatial Variability of Soil Properties.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, Issue 7, pp. 975-984, 2010.
  • [14] T. M. H. Le, M. Sanchez, D. Gallipoli and S. Wheeler, “Probabilistic modelling of autocorrelation characteristics of heterogeneous slopes.” Geomechanics and Geoengineering, Vol. 10, Issue 2, pp. 95-108, 2014.
  • [15] D. V. Griffiths and G. A. Fenton, “Probabilistic Slope Stability Analysis by Finite Elements.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, Issue 5, pp. 507-518, 2004.
  • [16] M. Tabarroki, F. Ahmad, R. Banaki, S. Jha and J. Ching, “Determining the factors of safety of spatially variable slopes modeled by random fields.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, Issue 12, pp. 2082-2095, 2013.
  • [17] S. H. Jiang, D. Q. Li, Z. J. Cao, C. B. Zhou and K. K. Phoon, “Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, Issue 2, 04014096, 2014.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Nejan Huvaj 0000-0002-0909-1135

Emir Ahmet Oğuz Bu kişi benim 0000-0002-1158-1926

Yayımlanma Tarihi 1 Ekim 2018
Gönderilme Tarihi 8 Haziran 2018
Kabul Tarihi 5 Temmuz 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Huvaj, N., & Oğuz, E. A. (2018). Probabilistic Slope Stability Analysis: A Case Study. Sakarya University Journal of Science, 22(5), 1458-1465. https://doi.org/10.16984/saufenbilder.430032
AMA Huvaj N, Oğuz EA. Probabilistic Slope Stability Analysis: A Case Study. SAUJS. Ekim 2018;22(5):1458-1465. doi:10.16984/saufenbilder.430032
Chicago Huvaj, Nejan, ve Emir Ahmet Oğuz. “Probabilistic Slope Stability Analysis: A Case Study”. Sakarya University Journal of Science 22, sy. 5 (Ekim 2018): 1458-65. https://doi.org/10.16984/saufenbilder.430032.
EndNote Huvaj N, Oğuz EA (01 Ekim 2018) Probabilistic Slope Stability Analysis: A Case Study. Sakarya University Journal of Science 22 5 1458–1465.
IEEE N. Huvaj ve E. A. Oğuz, “Probabilistic Slope Stability Analysis: A Case Study”, SAUJS, c. 22, sy. 5, ss. 1458–1465, 2018, doi: 10.16984/saufenbilder.430032.
ISNAD Huvaj, Nejan - Oğuz, Emir Ahmet. “Probabilistic Slope Stability Analysis: A Case Study”. Sakarya University Journal of Science 22/5 (Ekim 2018), 1458-1465. https://doi.org/10.16984/saufenbilder.430032.
JAMA Huvaj N, Oğuz EA. Probabilistic Slope Stability Analysis: A Case Study. SAUJS. 2018;22:1458–1465.
MLA Huvaj, Nejan ve Emir Ahmet Oğuz. “Probabilistic Slope Stability Analysis: A Case Study”. Sakarya University Journal of Science, c. 22, sy. 5, 2018, ss. 1458-65, doi:10.16984/saufenbilder.430032.
Vancouver Huvaj N, Oğuz EA. Probabilistic Slope Stability Analysis: A Case Study. SAUJS. 2018;22(5):1458-65.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.