Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 549 - 553, 01.08.2019
https://doi.org/10.16984/saufenbilder.484564

Öz

Kaynakça

  • acar1 : T. Acar, A. Aral and I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1) (2014) 27-41.
  • gulsum : T. Acar, G. Ulusoy, Approximation by modified Szasz Durrmeyer operators, Period Math Hung, 72 (2016) 64-75.
  • baskakov : V. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk SSSR 113 (2) (1957) 249-251.
  • acar2 : T. Acar, V. Gupta and A. Aral, Rate of Convergence for Generalized Szász Operators, Bulletin of Mathematical Science 1 (1) (2011) 99-113.
  • aral1 : A. Aral, D. Inoan and I. Raşa, On the Generalized Szász-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
  • aral2 : A. Aral, V. Gupta, Generalized Szász Durrmeyer Operators, Lobachevskii J. Math. 32 (1) (2011) 23--31.
  • cardenes : D. Cárdenas-Morales, P. Garrancho, I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62 (2011) 158-163.
  • gadziev1 : A. D. Gadziev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR, 218 (1974) 1001-1004. Also in Soviet Math Dokl.15 (1974), 1433-1436 (in English).
  • gadziev2 : A. D. Gadziev, Theorems of the type of P. P. Korovkin's theorems (in Russian), Math. Z. 205 (1976), 781-786 translated in Math. Notes, 20 (5-6) (1977), 995-998.
  • gupta1 : V. Gupta, U. Abel, On the rate of convergence of Bézier variant of Szász-Durrmeyer operators, Anal. Theory Appl. 19 (1) (2003) 81-88.
  • holhos : A. Holhos, Quantitative estimates for positive linear operators in weighted space, General Math. 16 (4) (2008) 99-110.
  • mediha : Prashantkumar Patel, Vishnu Narayan Mishra and Mediha Örkcü, Some approximation properties of the generalized Baskakov operators, Journal of Interdisciplinary Mathematics, 21 (3) (2018) 611-622.

On the Generalized Baskakov Durrmeyer Operators

Yıl 2019, , 549 - 553, 01.08.2019
https://doi.org/10.16984/saufenbilder.484564

Öz

The main object of this paper is to construct Baskakov Durrmeyer type operators such that their construction depends on a function ρ. Using the weighted modulus of continuity, we show the uniform convergence of the operators. Moreover we obtain pointwise convergence of B_{n}^{ρ} by obtaining Voronovskaya type theorem. All results show that our new operators are sensitive to the rate of convergence to f, depending on our selection of ρ.

Kaynakça

  • acar1 : T. Acar, A. Aral and I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1) (2014) 27-41.
  • gulsum : T. Acar, G. Ulusoy, Approximation by modified Szasz Durrmeyer operators, Period Math Hung, 72 (2016) 64-75.
  • baskakov : V. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk SSSR 113 (2) (1957) 249-251.
  • acar2 : T. Acar, V. Gupta and A. Aral, Rate of Convergence for Generalized Szász Operators, Bulletin of Mathematical Science 1 (1) (2011) 99-113.
  • aral1 : A. Aral, D. Inoan and I. Raşa, On the Generalized Szász-Mirakyan Operators, Results in Mathematics 65 (2014) 441-452.
  • aral2 : A. Aral, V. Gupta, Generalized Szász Durrmeyer Operators, Lobachevskii J. Math. 32 (1) (2011) 23--31.
  • cardenes : D. Cárdenas-Morales, P. Garrancho, I. Raşa, Bernstein-type operators which preserve polynomials, Computers and Mathematics with Applications 62 (2011) 158-163.
  • gadziev1 : A. D. Gadziev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR, 218 (1974) 1001-1004. Also in Soviet Math Dokl.15 (1974), 1433-1436 (in English).
  • gadziev2 : A. D. Gadziev, Theorems of the type of P. P. Korovkin's theorems (in Russian), Math. Z. 205 (1976), 781-786 translated in Math. Notes, 20 (5-6) (1977), 995-998.
  • gupta1 : V. Gupta, U. Abel, On the rate of convergence of Bézier variant of Szász-Durrmeyer operators, Anal. Theory Appl. 19 (1) (2003) 81-88.
  • holhos : A. Holhos, Quantitative estimates for positive linear operators in weighted space, General Math. 16 (4) (2008) 99-110.
  • mediha : Prashantkumar Patel, Vishnu Narayan Mishra and Mediha Örkcü, Some approximation properties of the generalized Baskakov operators, Journal of Interdisciplinary Mathematics, 21 (3) (2018) 611-622.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Gülsüm Ulusoy 0000-0003-2755-2334

Yayımlanma Tarihi 1 Ağustos 2019
Gönderilme Tarihi 17 Kasım 2018
Kabul Tarihi 14 Ocak 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Ulusoy, G. (2019). On the Generalized Baskakov Durrmeyer Operators. Sakarya University Journal of Science, 23(4), 549-553. https://doi.org/10.16984/saufenbilder.484564
AMA Ulusoy G. On the Generalized Baskakov Durrmeyer Operators. SAUJS. Ağustos 2019;23(4):549-553. doi:10.16984/saufenbilder.484564
Chicago Ulusoy, Gülsüm. “On the Generalized Baskakov Durrmeyer Operators”. Sakarya University Journal of Science 23, sy. 4 (Ağustos 2019): 549-53. https://doi.org/10.16984/saufenbilder.484564.
EndNote Ulusoy G (01 Ağustos 2019) On the Generalized Baskakov Durrmeyer Operators. Sakarya University Journal of Science 23 4 549–553.
IEEE G. Ulusoy, “On the Generalized Baskakov Durrmeyer Operators”, SAUJS, c. 23, sy. 4, ss. 549–553, 2019, doi: 10.16984/saufenbilder.484564.
ISNAD Ulusoy, Gülsüm. “On the Generalized Baskakov Durrmeyer Operators”. Sakarya University Journal of Science 23/4 (Ağustos 2019), 549-553. https://doi.org/10.16984/saufenbilder.484564.
JAMA Ulusoy G. On the Generalized Baskakov Durrmeyer Operators. SAUJS. 2019;23:549–553.
MLA Ulusoy, Gülsüm. “On the Generalized Baskakov Durrmeyer Operators”. Sakarya University Journal of Science, c. 23, sy. 4, 2019, ss. 549-53, doi:10.16984/saufenbilder.484564.
Vancouver Ulusoy G. On the Generalized Baskakov Durrmeyer Operators. SAUJS. 2019;23(4):549-53.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.