Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 652 - 664, 01.08.2020
https://doi.org/10.16984/saufenbilder.699212

Öz

Kaynakça

  • M.K. Bakula, M.E. Özdemir, and J. Pečarić, “Hadamard type inequalities for m-convex and (α,m)-convex functions,” J. Inequal. Pure Appl. Math. 9(4), Art. 96, 12 pages, 2008.
  • S.S. Dragomir, “Inequalities of Hermite-Hadamard type for GA-convex functions,” Annales Mathematicae Silesianae. 32(1). Sciendo, 2018.
  • S.S. Dragomir and RP. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,” Appl. Math. Lett. 11, 91-95, 1998.
  • S.S. Dragomir and C.E.M. Pearce, “Selected Topics on Hermite-Hadamard Inequalities and Its Applications,” RGMIA Monograph, 2002.
  • S.S. Dragomir, J. Pečarić and LE.Persson, “Some inequalities of Hadamard Type,” Soochow Journal of Mathematics, 21(3), pp. 335-341, 2001.
  • J. Hadamard, “Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann,” J. Math. Pures Appl. 58, 171-215, 1893.
  • İ. İşcan, “New refinements for integral and sum forms of Hölder inequality,” 2019:304, 11 pages, 2019.
  • İ. İşcan and M. Kunt, “Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, Journal of Mathematics,” Volume 2016, Article ID 6523041, 7 pages, 2016.
  • A.P. Ji, T.Y. Zhang, F. Qi, “Integral inequalities of Hermite-Hadamard type for (α,m)-GA-convex functions,” arXiv preprint arXiv:1306.0852, 4 June 2013.
  • H. Kadakal, “Hermite-Hadamard type inequalities for trigonometrically convex functions,” Scientific Studies and Research. Series Mathematics and Informatics, 28(2), 19-28, 2018.
  • H. Kadakal, “New Inequalities for Strongly r-Convex Functions,” Journal of Function Spaces, Volume 2019, Article ID 1219237, 10 pages, 2019.
  • H. Kadakal, “(m_1,m_2 )-convexity and some new Hermite-Hadamard type inequalities,” International Journal of Mathematical Modelling and Computations, (Accepted for publication), 2020.
  • H. Kadakal, “(α,m_1,m_2 )-convexity and some inequalities of Hermite-Hadamard type,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2128-2142, 2019.
  • M. Kadakal, “(m_1,m_2 )-geometric arithmetically convex functions and related inequalities,” Mathematical Sciences and Applications E-Notes, (Submitted to journal), 2020.
  • M. Kadakal, H. Kadakal and İ. İşcan, “Some new integral inequalities for n-times differentiable s-convex functions in the first sense,” Turkish Journal of Analysis and Number Theory, 5(2), 63-68, 2017.
  • V.G. Miheşan, “A generalization of the convexity,” Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, (Romania), 1993.
  • C.P. Niculescu, “Convexity according to the geometric mean,” Math. Inequal. Appl. 3(2), 155-167, 2000.
  • C.P. Niculescu, “Convexity according to means,” Math. Inequal. Appl. 6 (4), 571-579, 2003.
  • S. Özcan, “Some Integral Inequalities for Harmonically (α,s)-Convex Functions, Journal of Function Spaces,” 2019, Article ID 2394021, 8 pages 2019.
  • S. Özcan, and İ. İşcan, “Some new Hermite-Hadamard type inequalities for s-convex functions and their applications,” Journal of Inequalities and Applications, Article number: 2019:201, 2019.
  • Y. Shuang, Yin, H.P. and Qi, F., “Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions,” Analysis, 33, 197-208, 2013.
  • G. Toader, “Some generalizations of the convexity,” Proc. Colloq. Approx. Optim., Univ. Cluj Napoca, Cluj-Napoca, 329-338, 1985.
  • F. Usta, H. Budak and M.Z. Sarıkaya, “Montgomery identities and Ostrowski type inequalities for fractional integral operators,” Revista de la Real Academia de Ciencias Exactas, F13 ̆053'fsicas y Naturales. Serie A. Matemáticas, 113(2), 1059-1080, 2019.
  • F. Usta, H. Budak and M.Z. Sarıkaya, “Some New Chebyshev Type Inequalities Utilizing Generalized Fractional Integral Operators,” AIMS Mathematics, 5(2), 1147-1161, 2020.
  • S. Varošanec, “On h-convexity,”J. Math. Anal. Appl. 326, 303-311, 2007.

Some new inequalities for (α,m1,m2 )-GA convex functions

Yıl 2020, , 652 - 664, 01.08.2020
https://doi.org/10.16984/saufenbilder.699212

Öz

In this manuscript, firstly we introduce and study the concept of (α,m_1,m_2 )-Geometric-Arithmetically (GA) convex functions and some algebraic properties of such type functions. Then, we obtain Hermite-Hadamard type integral inequalities for the newly introduced class of functions by using an identity together with Hölder integral inequality, power-mean integral inequality and Hölder-İşcan integral inequality giving a better approach than Hölder integral inequality. Inequalities have been obtained with the help of Gamma function. In addition, results were obtained according to the special cases of α, m_1 and m_2.

Kaynakça

  • M.K. Bakula, M.E. Özdemir, and J. Pečarić, “Hadamard type inequalities for m-convex and (α,m)-convex functions,” J. Inequal. Pure Appl. Math. 9(4), Art. 96, 12 pages, 2008.
  • S.S. Dragomir, “Inequalities of Hermite-Hadamard type for GA-convex functions,” Annales Mathematicae Silesianae. 32(1). Sciendo, 2018.
  • S.S. Dragomir and RP. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,” Appl. Math. Lett. 11, 91-95, 1998.
  • S.S. Dragomir and C.E.M. Pearce, “Selected Topics on Hermite-Hadamard Inequalities and Its Applications,” RGMIA Monograph, 2002.
  • S.S. Dragomir, J. Pečarić and LE.Persson, “Some inequalities of Hadamard Type,” Soochow Journal of Mathematics, 21(3), pp. 335-341, 2001.
  • J. Hadamard, “Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann,” J. Math. Pures Appl. 58, 171-215, 1893.
  • İ. İşcan, “New refinements for integral and sum forms of Hölder inequality,” 2019:304, 11 pages, 2019.
  • İ. İşcan and M. Kunt, “Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, Journal of Mathematics,” Volume 2016, Article ID 6523041, 7 pages, 2016.
  • A.P. Ji, T.Y. Zhang, F. Qi, “Integral inequalities of Hermite-Hadamard type for (α,m)-GA-convex functions,” arXiv preprint arXiv:1306.0852, 4 June 2013.
  • H. Kadakal, “Hermite-Hadamard type inequalities for trigonometrically convex functions,” Scientific Studies and Research. Series Mathematics and Informatics, 28(2), 19-28, 2018.
  • H. Kadakal, “New Inequalities for Strongly r-Convex Functions,” Journal of Function Spaces, Volume 2019, Article ID 1219237, 10 pages, 2019.
  • H. Kadakal, “(m_1,m_2 )-convexity and some new Hermite-Hadamard type inequalities,” International Journal of Mathematical Modelling and Computations, (Accepted for publication), 2020.
  • H. Kadakal, “(α,m_1,m_2 )-convexity and some inequalities of Hermite-Hadamard type,” Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 2128-2142, 2019.
  • M. Kadakal, “(m_1,m_2 )-geometric arithmetically convex functions and related inequalities,” Mathematical Sciences and Applications E-Notes, (Submitted to journal), 2020.
  • M. Kadakal, H. Kadakal and İ. İşcan, “Some new integral inequalities for n-times differentiable s-convex functions in the first sense,” Turkish Journal of Analysis and Number Theory, 5(2), 63-68, 2017.
  • V.G. Miheşan, “A generalization of the convexity,” Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, (Romania), 1993.
  • C.P. Niculescu, “Convexity according to the geometric mean,” Math. Inequal. Appl. 3(2), 155-167, 2000.
  • C.P. Niculescu, “Convexity according to means,” Math. Inequal. Appl. 6 (4), 571-579, 2003.
  • S. Özcan, “Some Integral Inequalities for Harmonically (α,s)-Convex Functions, Journal of Function Spaces,” 2019, Article ID 2394021, 8 pages 2019.
  • S. Özcan, and İ. İşcan, “Some new Hermite-Hadamard type inequalities for s-convex functions and their applications,” Journal of Inequalities and Applications, Article number: 2019:201, 2019.
  • Y. Shuang, Yin, H.P. and Qi, F., “Hermite-Hadamard type integral inequalities for geometric-arithmetically s-convex functions,” Analysis, 33, 197-208, 2013.
  • G. Toader, “Some generalizations of the convexity,” Proc. Colloq. Approx. Optim., Univ. Cluj Napoca, Cluj-Napoca, 329-338, 1985.
  • F. Usta, H. Budak and M.Z. Sarıkaya, “Montgomery identities and Ostrowski type inequalities for fractional integral operators,” Revista de la Real Academia de Ciencias Exactas, F13 ̆053'fsicas y Naturales. Serie A. Matemáticas, 113(2), 1059-1080, 2019.
  • F. Usta, H. Budak and M.Z. Sarıkaya, “Some New Chebyshev Type Inequalities Utilizing Generalized Fractional Integral Operators,” AIMS Mathematics, 5(2), 1147-1161, 2020.
  • S. Varošanec, “On h-convexity,”J. Math. Anal. Appl. 326, 303-311, 2007.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Mahir Kadakal 0000-0002-0240-918X

Yayımlanma Tarihi 1 Ağustos 2020
Gönderilme Tarihi 5 Mart 2020
Kabul Tarihi 10 Mayıs 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kadakal, M. (2020). Some new inequalities for (α,m1,m2 )-GA convex functions. Sakarya University Journal of Science, 24(4), 652-664. https://doi.org/10.16984/saufenbilder.699212
AMA Kadakal M. Some new inequalities for (α,m1,m2 )-GA convex functions. SAUJS. Ağustos 2020;24(4):652-664. doi:10.16984/saufenbilder.699212
Chicago Kadakal, Mahir. “Some New Inequalities for (α,m1,m2 )-GA Convex Functions”. Sakarya University Journal of Science 24, sy. 4 (Ağustos 2020): 652-64. https://doi.org/10.16984/saufenbilder.699212.
EndNote Kadakal M (01 Ağustos 2020) Some new inequalities for (α,m1,m2 )-GA convex functions. Sakarya University Journal of Science 24 4 652–664.
IEEE M. Kadakal, “Some new inequalities for (α,m1,m2 )-GA convex functions”, SAUJS, c. 24, sy. 4, ss. 652–664, 2020, doi: 10.16984/saufenbilder.699212.
ISNAD Kadakal, Mahir. “Some New Inequalities for (α,m1,m2 )-GA Convex Functions”. Sakarya University Journal of Science 24/4 (Ağustos 2020), 652-664. https://doi.org/10.16984/saufenbilder.699212.
JAMA Kadakal M. Some new inequalities for (α,m1,m2 )-GA convex functions. SAUJS. 2020;24:652–664.
MLA Kadakal, Mahir. “Some New Inequalities for (α,m1,m2 )-GA Convex Functions”. Sakarya University Journal of Science, c. 24, sy. 4, 2020, ss. 652-64, doi:10.16984/saufenbilder.699212.
Vancouver Kadakal M. Some new inequalities for (α,m1,m2 )-GA convex functions. SAUJS. 2020;24(4):652-64.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.