Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical and experimental approach of various sectioned new concept of the crash-boxes to determine the reliability and crashworthiness of the vehicles during frontal impacts

Yıl 2019, Cilt: 23 Sayı: 1, 76 - 84, 01.02.2019
https://doi.org/10.16984/saufenbilder.460078

Öz

Araç kazaları incelendiğinde, çarpışma
davranışını ve yolcu güvenliğini değerlendirmek hususunda bir perspektif oluşmaktadır.
Araç gövdesindeki deformasyonları ve yolcu yaralanmalarını azaltmak için
günümüze değin birçok donanım zaten geliştirilmiş bulunmaktadır. Bu donanımlar,
aktif ve pasif güvenlik sistemleri olarak ikiye ayrılmaktadır. Bu çalışma, araçların
kaza sürecinde çarpışma kutusu adı altında kullanılan pasif güvenlik sistemleri
hakkında olup, önden çarpışmalardaki şok etkilerinin azaltılması maksadıyla
deneysel olarak incelemelerden oluşmaktadır. Çarpışma kutuları için kare, dairesel
ve diğer standart kapalı kesitler imalatın kolaylığı bakımından tercih
edilmektedirler. Bu çalışma için ise açık kesitli çarpışma kutuları
çalışılmıştır. İmalattaki sınırlandırmalardan dolayı dört yeni tasarımdan bir
tanesi tercih edilmiştir. Bu yeni tasarım çarpışma kutusu klasik kullanımdakinden
farklı olarak şasi önünde ve ön tamponun hemen arkasında yer almaktadır. W şekilli
bir kesite sahip olan çelik sac-metal çarpışma kutusu şok emici bir ünite
olarak üretilmiştir. Deneyler için ise 2.88m düşürme yüksekliğine sahip bir
test düzeneği kullanılmıştır. Test sürecinde, deney düzeneğinin kapasitesine
bağlı olarak 1200kg’ a sahip bir aracın gerçek kaza senaryosunun sekizde biri
canlandırabilmektedir. Çarpışma testleri, kabul edilen kaza senaryosunun oranı
doğrultusunda 150kg şeklinde olmaktadır. Sönümleyiciler için en uygun sac
kalınlığına karar verebilmek maksadıyla 2mm, 1.5mm, 1mm ve 0.8mm kalınlıktaki
numuneler kullanılmışlardır. Sonuç olarak ise, 1mm kalınlıktaki St37 malzemeden
imal edilmiş w şekilli sac-metal çarpışma kutusunun, önden meydana gelen kazada
ortaya çıkan çarpışma enerjisini sönümleyebilecek kadar dayanıklı olduğu
anlaşılmıştır.

Kaynakça

  • [1] S. Boria, J. Obradovic, and G. Belingardi, “Experimental and numerical investigations of the impact behaviour of composite frontal crash structures,” Composites Part B: Engineering, vol. 79, pp. 20–27, 2015.
  • [2] K. Solabannawar, S.I. Bekinal, “To simulate and study the behaviour of vehicle front structure through tox joints in frontal collision,” International Research Journal of Engineering and Technology (IRJET)”, vol. 03, no. 7, pp. 1702-1707, 2016.
  • [3] A. Ghadianlou, S.B. Abdullah, and A. Agarwal, “Crashworthiness design of vehicle side door beams under low-speed pole side impacts,” Thin-Walled Structures, vol. 67, pp. 25-33, 2013.
  • [4] N. Tanlak, “Cross-sectional shape optimization of thin-walled columns enduring oblique impact loads,” Thin-Walled Structures, vol. 107, pp. 65-72, 2016.
  • [5] N.N. Hussain, S.P. Regalla and Y.V.D. Rao, “Low velocity Impact Characterization of Glass Fibre Reinforced Plastics for Application of Crash Box,” Materialstoday: Proceedings, vol. 4 (2 PartA), pp. 3252-3262 2011.
  • [6] J.A.C. Ambrósio, “Contact and impact models for vehicle crashworthiness simulation,” International Journal of Crashworthiness 8, vol. 8, no. 1, pp. 73-86, 2003.
  • [7] Y. Nakazawa, K. Tamura, M. Yoshida, K. Takagi and M. Kano, “Development of Crash-box for passenger car with high capability for energy absorption,” CIMNE 2005 VIII International Conference on Computational Plasticity, 2005.
  • [8] G. Belingardi, A.T. Beyene, E.G. Koricho and B. Martorana, “Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam,” Composite Structures, vol. 112, pp. 1-10, 2014.
  • [9] C. Zhou, Y. Zhou and B. Wang, “Crashworthiness design for trapezoid origami crash boxes,” Thin-Walled Structures, vol. 117, pp. 257-267, 2017.
  • [10] G. Belingardi, A.T. Beyene, E.G. Koricho and B. Martorana, “Crashworthiness of integrated crash-box and bumper beam made by die- forming composite,” 16th European Conf. on Composite Materials, 2014.
  • [11] H. Chul, K. Dong, K. Shin, J.J. Lee and J.B. Kwon, “Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application,” Composite Structures, vol. 112, pp. 1-10 2014.
  • [12] G. Suna, T. Panga, C. Xua, G. Zhenga and J. Songc, “Energy absorption mechanics for variable thickness thin-walled structures,” Thin-Walled Structures , vol. 118, no. 1, pp. 214-218, 2017.
  • [13] F. Tarlochan, F. Samer, A.M.S. Hamouda, S. Ramesh and K. Khalid, “Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Structures, vol. 71, pp. 7-17, 2013.
  • [14] A.A.A. Alghamdi, “Collapsible impact energy absorbers: An overview,” Thin-Walled Structures, vol. 39, pp. 189-213, 2001.
  • [15] T. Wierzbicki, W. Abramowicz, “Collapsible impact energy absorbers: An overview,” Thin-Walled Structures, vol. 50, pp. 727-734, 1983.
  • [16] S.A. Meguid, Y.P, “. Hou, Crush behaviour of foam-filled thin-walled conical frusta: analytical, numerical and experimental studies,” Acta Mechanical, vol. 227, pp. 3391–3406, 2016.
  • [17] Y. Zhou, F. Lan and J. Chen, “Crashworthiness research on S-shaped front rails made of steel–aluminium hybrid materials,” Thin-Walled Structures, vol. 49, pp. 291-297 2011.
  • [18] N. Tanlak, F.O. Sonmez and M. Senaltun, “Shape optimization of bumper beams under high-velocity impact loads,” Engineering Structures, vol. 95, pp. 49-60, 2015.
  • [19] H. Ozera, Y. Canb and M. Yazıcıa, “Investigation of the Crash Boxes Light Weighting with Syntactic Foams by the Finite Element Analysis,” Acta Phys. Pol. A, vol. 132, pp. 734-737, 2017.
  • [20] U. Ozsaraca, S. Isika, F. Varolb, “M.E. Unata, C. Ozdemira and S. Aslanlara, Investigation of Tensile Properties of Aluminium 6082-T6 Alloys Joined by Cold Metal Transfer Method by Using Different Working Time,” Acta Phys. Pol. A, vol. 132, pp. 705-707, 2017.
  • [21] M. Urbanek and D. Blaszkiewicz, “FEM Based Improvement of CAD for Non-Conventional Railway Track,” Acta Phys. Pol. A, vol. 128, pp. 241-242, 2015.
  • [22] I. K. Yilmazcoban, Omer Adanur, “Experimental Crash-Box Optimizations for The Frontal Impact Scenario of a Vehicle to Decrease The Shock Effects of Collisions,” ICCESEN 2017 4th International Conference on Computational and Experimental Science and Engineering, pp. 387, 2017.
Yıl 2019, Cilt: 23 Sayı: 1, 76 - 84, 01.02.2019
https://doi.org/10.16984/saufenbilder.460078

Öz

Kaynakça

  • [1] S. Boria, J. Obradovic, and G. Belingardi, “Experimental and numerical investigations of the impact behaviour of composite frontal crash structures,” Composites Part B: Engineering, vol. 79, pp. 20–27, 2015.
  • [2] K. Solabannawar, S.I. Bekinal, “To simulate and study the behaviour of vehicle front structure through tox joints in frontal collision,” International Research Journal of Engineering and Technology (IRJET)”, vol. 03, no. 7, pp. 1702-1707, 2016.
  • [3] A. Ghadianlou, S.B. Abdullah, and A. Agarwal, “Crashworthiness design of vehicle side door beams under low-speed pole side impacts,” Thin-Walled Structures, vol. 67, pp. 25-33, 2013.
  • [4] N. Tanlak, “Cross-sectional shape optimization of thin-walled columns enduring oblique impact loads,” Thin-Walled Structures, vol. 107, pp. 65-72, 2016.
  • [5] N.N. Hussain, S.P. Regalla and Y.V.D. Rao, “Low velocity Impact Characterization of Glass Fibre Reinforced Plastics for Application of Crash Box,” Materialstoday: Proceedings, vol. 4 (2 PartA), pp. 3252-3262 2011.
  • [6] J.A.C. Ambrósio, “Contact and impact models for vehicle crashworthiness simulation,” International Journal of Crashworthiness 8, vol. 8, no. 1, pp. 73-86, 2003.
  • [7] Y. Nakazawa, K. Tamura, M. Yoshida, K. Takagi and M. Kano, “Development of Crash-box for passenger car with high capability for energy absorption,” CIMNE 2005 VIII International Conference on Computational Plasticity, 2005.
  • [8] G. Belingardi, A.T. Beyene, E.G. Koricho and B. Martorana, “Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam,” Composite Structures, vol. 112, pp. 1-10, 2014.
  • [9] C. Zhou, Y. Zhou and B. Wang, “Crashworthiness design for trapezoid origami crash boxes,” Thin-Walled Structures, vol. 117, pp. 257-267, 2017.
  • [10] G. Belingardi, A.T. Beyene, E.G. Koricho and B. Martorana, “Crashworthiness of integrated crash-box and bumper beam made by die- forming composite,” 16th European Conf. on Composite Materials, 2014.
  • [11] H. Chul, K. Dong, K. Shin, J.J. Lee and J.B. Kwon, “Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application,” Composite Structures, vol. 112, pp. 1-10 2014.
  • [12] G. Suna, T. Panga, C. Xua, G. Zhenga and J. Songc, “Energy absorption mechanics for variable thickness thin-walled structures,” Thin-Walled Structures , vol. 118, no. 1, pp. 214-218, 2017.
  • [13] F. Tarlochan, F. Samer, A.M.S. Hamouda, S. Ramesh and K. Khalid, “Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Structures, vol. 71, pp. 7-17, 2013.
  • [14] A.A.A. Alghamdi, “Collapsible impact energy absorbers: An overview,” Thin-Walled Structures, vol. 39, pp. 189-213, 2001.
  • [15] T. Wierzbicki, W. Abramowicz, “Collapsible impact energy absorbers: An overview,” Thin-Walled Structures, vol. 50, pp. 727-734, 1983.
  • [16] S.A. Meguid, Y.P, “. Hou, Crush behaviour of foam-filled thin-walled conical frusta: analytical, numerical and experimental studies,” Acta Mechanical, vol. 227, pp. 3391–3406, 2016.
  • [17] Y. Zhou, F. Lan and J. Chen, “Crashworthiness research on S-shaped front rails made of steel–aluminium hybrid materials,” Thin-Walled Structures, vol. 49, pp. 291-297 2011.
  • [18] N. Tanlak, F.O. Sonmez and M. Senaltun, “Shape optimization of bumper beams under high-velocity impact loads,” Engineering Structures, vol. 95, pp. 49-60, 2015.
  • [19] H. Ozera, Y. Canb and M. Yazıcıa, “Investigation of the Crash Boxes Light Weighting with Syntactic Foams by the Finite Element Analysis,” Acta Phys. Pol. A, vol. 132, pp. 734-737, 2017.
  • [20] U. Ozsaraca, S. Isika, F. Varolb, “M.E. Unata, C. Ozdemira and S. Aslanlara, Investigation of Tensile Properties of Aluminium 6082-T6 Alloys Joined by Cold Metal Transfer Method by Using Different Working Time,” Acta Phys. Pol. A, vol. 132, pp. 705-707, 2017.
  • [21] M. Urbanek and D. Blaszkiewicz, “FEM Based Improvement of CAD for Non-Conventional Railway Track,” Acta Phys. Pol. A, vol. 128, pp. 241-242, 2015.
  • [22] I. K. Yilmazcoban, Omer Adanur, “Experimental Crash-Box Optimizations for The Frontal Impact Scenario of a Vehicle to Decrease The Shock Effects of Collisions,” ICCESEN 2017 4th International Conference on Computational and Experimental Science and Engineering, pp. 387, 2017.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

İbrahim Kutay Yılmazçoban 0000-0002-9886-5533

Ömer Adanur 0000-0003-4314-2538

Ahmad Bakhtiyar Bu kişi benim 0000-0003-4238-8632

Aslı Ergün Bu kişi benim 0000-0002-0476-1865

Yayımlanma Tarihi 1 Şubat 2019
Gönderilme Tarihi 14 Eylül 2018
Kabul Tarihi 27 Eylül 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 1

Kaynak Göster

APA Yılmazçoban, İ. K., Adanur, Ö., Bakhtiyar, A., Ergün, A. (2019). Numerical and experimental approach of various sectioned new concept of the crash-boxes to determine the reliability and crashworthiness of the vehicles during frontal impacts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 76-84. https://doi.org/10.16984/saufenbilder.460078
AMA Yılmazçoban İK, Adanur Ö, Bakhtiyar A, Ergün A. Numerical and experimental approach of various sectioned new concept of the crash-boxes to determine the reliability and crashworthiness of the vehicles during frontal impacts. SAUJS. Şubat 2019;23(1):76-84. doi:10.16984/saufenbilder.460078
Chicago Yılmazçoban, İbrahim Kutay, Ömer Adanur, Ahmad Bakhtiyar, ve Aslı Ergün. “Numerical and Experimental Approach of Various Sectioned New Concept of the Crash-Boxes to Determine the Reliability and Crashworthiness of the Vehicles During Frontal Impacts”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 1 (Şubat 2019): 76-84. https://doi.org/10.16984/saufenbilder.460078.
EndNote Yılmazçoban İK, Adanur Ö, Bakhtiyar A, Ergün A (01 Şubat 2019) Numerical and experimental approach of various sectioned new concept of the crash-boxes to determine the reliability and crashworthiness of the vehicles during frontal impacts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 1 76–84.
IEEE İ. K. Yılmazçoban, Ö. Adanur, A. Bakhtiyar, ve A. Ergün, “Numerical and experimental approach of various sectioned new concept of the crash-boxes to determine the reliability and crashworthiness of the vehicles during frontal impacts”, SAUJS, c. 23, sy. 1, ss. 76–84, 2019, doi: 10.16984/saufenbilder.460078.
ISNAD Yılmazçoban, İbrahim Kutay vd. “Numerical and Experimental Approach of Various Sectioned New Concept of the Crash-Boxes to Determine the Reliability and Crashworthiness of the Vehicles During Frontal Impacts”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/1 (Şubat 2019), 76-84. https://doi.org/10.16984/saufenbilder.460078.
JAMA Yılmazçoban İK, Adanur Ö, Bakhtiyar A, Ergün A. Numerical and experimental approach of various sectioned new concept of the crash-boxes to determine the reliability and crashworthiness of the vehicles during frontal impacts. SAUJS. 2019;23:76–84.
MLA Yılmazçoban, İbrahim Kutay vd. “Numerical and Experimental Approach of Various Sectioned New Concept of the Crash-Boxes to Determine the Reliability and Crashworthiness of the Vehicles During Frontal Impacts”. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 1, 2019, ss. 76-84, doi:10.16984/saufenbilder.460078.
Vancouver Yılmazçoban İK, Adanur Ö, Bakhtiyar A, Ergün A. Numerical and experimental approach of various sectioned new concept of the crash-boxes to determine the reliability and crashworthiness of the vehicles during frontal impacts. SAUJS. 2019;23(1):76-84.

Cited By


Experimental and numerical analysis of a novel 3D re-entrant auxetic structure
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
https://doi.org/10.1177/09544070221139556

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.