Araştırma Makalesi
BibTex RIS Kaynak Göster

Respiratory Threshold as A New Threshold Determination Method based on Respiratory Responses and It’s Success to Indicate Critical Power

Yıl 2022, , 149 - 162, 31.10.2022
https://doi.org/10.17644/sbd.1107799

Öz

The respiratory threshold (RT), introduced as a new threshold determination method that relied on respiratory responses, is based on the analysis of time-dependent changes in the value of minute ventilation divided by the end-tidal partial pressure of CO2 (VE/PETCO2) in an incremental ramp test. However, there is no research finding focusing on the level at which the RT technique can indicate the critical power (CP), which is an essential threshold determination method widely used. The aim of this study was to investigate at which level the exercise intensity obtained using the RT technique can meet the CP. Ten well-trained male cyclists participated in the study. Gas exchange threshold (GET), respiratory compensation point (RCP), and RT levels of the athletes were determined by incremental ramp tests. In those tests, GET and RCP were evaluated by detecting breakpoints obtained in relationships of VCO2-VO2 and VE-VCO2 using the Innocor system. The RT level was found by the strongest breakpoint in the VE/PETCO2-time relationship using SegReg software. Then, tests were applied at constant work rates on different days to estimate the CP. Validity analyses were performed to test the relationships of all threshold indicators with each other. Results showed a high correlation and concordance between RT (328±35.5 W; 4.23±0.39 L·min−1) and RCP (324±34.3 W; 4.21±0.45 L·min−1) power outputs and the VO2 responses of each (p>0.05; t= 1.19; r>0.96; estimated standard error % <5). However, both power outputs corresponded to RT and RCP were approximately 10% higher than the CP (298±32 W) (p<0.001). Our study revealed that the strongest breakpoint in the VE/PETCO2-time relationship in well-trained cyclists demonstrated the RCP with great success, but failed to determine the CP directly.

Kaynakça

  • 1. Atkinson, G. ve Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4), 217-238. https://doi.org/10.2165/00007256-199826040-00002
  • 2. Beaver, W. L., Wasserman, K. ve Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of applied physiology, 60(6), 2020-2027. https://doi.org/10.1152/jappl.1986.60.6.2020
  • 3. Beneke, R. (1995). Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Medicine and science in sports and exercise, 27(6), 863-867.
  • 4. Bergstrom, H. C., Housh, T. J., Cochrane, K. C., Jenkins, N. D. M., Lewis, R. W., Traylor, D. A., Zuniga, J. M., Schmidt, R. J., Johnson, G. O. ve Cramer, J. T. (2013). An examination of neuromuscular and metabolic fatigue thresholds. Physiological Measurement, 34(10), 1253-1267. https://doi.org/10.1088/0967-3334/34/10/1253
  • 5. Bergstrom, H. C., Housh, T. J., Zuniga, J. M., Traylor, D. A., Camic, C. L., Lewis, R. W., Schmidt, R. J. ve Johnson, G. O. (2013). The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Research quarterly for exercise and sport, 84(2), 232-238. https://doi.org/10.1080/02701367.2013.784723
  • 6. Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H. ve Schmid, J. P. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. European journal of cardiovascular prevention ve rehabilitation, 15(6), 726-734. https://doi.org/10.1097/HJR.0b013e328304fed4
  • 7. Black, M. I., Durant, J., Jones, A. M. ve Vanhatalo, A. (2014). Critical power derived from a 3-min all-out test predicts 16.1-km road time-trial performance. European Journal of Sport Science, 14(3), 217-223. https://doi.org/10.1080/17461391.2013.810306
  • 8. Black, M. I., Jones, A. M., Bailey, S. J. ve Vanhatalo, A. (2015). Self-pacing increases critical power and improves performance during severe-intensity exercise. Applied physiology, nutrition, and metabolism, 40(7), 662-670. https://doi.org/10.1139/apnm-2014-0442
  • 9. Black, M. I., Jones, A. M., Kelly, J. A., Bailey, S. J. ve Vanhatalo, A. (2016). The constant work rate critical power protocol overestimates ramp incremental exercise performance. European Journal of Applied Physiology, 116(11-12), 2415-2422. https://doi.org/10.1007/s00421-016-3491-y
  • 10. Bland, J. M. ve Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307-310. https://doi.org/10.1016/S0140-6736(86)90837-8
  • 11. Boone, J., Koppo, K. ve Bouckaert, J. (2008). The VO2 response to submaximal ramp cycle exercise: Influence of ramp slope and training status. Respiratory physiology ve neurobiology, 161(3), 291-297. https://doi.org/10.1016/J.RESP.2008.03.008
  • 12. Camic, C. L., Housh, T. J., Johnson, G. O., Hendrix, C. R., Zuniga, J. M., Mielke, M. ve Schmidt, R. J. (2010). An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry. European journal of applied physiology, 108(2), 337-345. https://doi.org/10.1007/s00421-009-1239-7
  • 13. Copp, S. W., Hirai, D. M., Musch, T. I. ve Poole, D. C. (2010). Critical speed in the rat: İmplications for hindlimb muscle blood flow distribution and fibre recruitment. The Journal of Physiology, 588(24), 5077-5087. https://doi.org/10.1113/jphysiol.2010.198382
  • 14. Crescêncio, J. C., Martins, L. E. B., Murta, L. O., Antloga, C. M., Kozuki, R. T., Santos, M. D. B., Neto, J. A. M., Maciel, B. C. ve Gallo, L. (2003). Measurement of anaerobic threshold during dynamic exercise in healthy subjects: Comparison among visual analysis and mathematical models. Computers in Cardiology, 2003, 801-804.
  • 15. Cross, T. ve Sabapathy, S. (2012). The Respiratory Compensation “Point” as a Determinant of O2 Uptake Kinetics? International Journal of Sports Medicine, 33(10), 854-854. https://doi.org/10.1055/s-0032-1321903
  • 16. Darabi, S., Dehghan, M., Refahi, S. ve Kiani, E. (2009). Ventilation, potassium and lactate during incremental exercise in men athletes. Research Journal of Biological Sciences, 4(4), 427-429.
  • 17. Dekerle, J., Baron, B., Dupont, L., Vanvelcenaher, J. ve Pelayo, P. (2003). Maximal lactate steady state, respiratory compensation threshold and critical power. European journal of applied physiology, 89(3), 281-288. https://doi.org/10.1007/s00421-002-0786-y
  • 18. Forster, H. V, Haouzi, P. ve Dempsey, J. A. (2012). Control of breathing during exercise. Comprehensive Physiology, 2(1), 743-777. https://doi.org/10.1002/cphy.c100045
  • 19. Galán-Rioja, M. Á., González-Mohíno, F., Poole, D. C. ve González-Ravé, J. M. (2020). Relative proximity of critical power and metabolic/ventilatory thresholds: Systematic review and meta-analysis. Sports Medicine, 50(10), 1771-1783. https://doi.org/10.1007/s40279-020-01314-8
  • 20. Greco, C. C., Caritá, R. A. C., Dekerle, J. ve Denadai, B. S. (2012). Effect of aerobic training status on both maximal lactate steady state and critical power. Applied Physiology, Nutrition and Metabolism, 37(4), 736-743. https://doi.org/10.1139/H2012-047
  • 21. Howley, E. T., Bassett, D. R. ve Welch, H. G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine and Science in Sports and Exercise, 27(9), 1292-1301. https://doi.org/10.1249/00005768-199509000-00009
  • 22. Jones, A. M., Burnley, M., Black, M. I., Poole, D. C. ve Vanhatalo, A. (2019). The maximal metabolic steady state: Redefining the ‘gold standard’. Physiological Reports, 7(10), e14098. https://doi.org/10.14814/phy2.14098
  • 23. Jones, A. M. ve Poole, D. C. (2009). Physiological demands of endurance exercise. Olympic Textbook of Science in Sport. Chichester, UK: Wiley-Blackwell Publishing, Chichester, UK, 43-55.
  • 24. Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J. ve Poole, D. C. (2008). Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294(2), R585-R593. https://doi.org/10.1152/ajpregu.00731.2007
  • 25. Karsten, B., Jobson, S. A., Hopker, J., Jimenez, A. ve Beedie, C. (2014). High agreement between laboratory and field estimates of critical power in cycling. International journal of sports medicine, 35(04), 298-303.
  • 26. Keir, D. A., Fontana, F. Y., Robertson, T. C., Murias, J. M., Paterson, D. H., Kowalchuk, J. M. ve Pogliaghi, S. (2015). Exercise intensity thresholds: Identifying the boundaries of sustainable performance. Medicine and Science in Sports and Exercise, 47(9), 1932-1940. https://doi.org/10.1249/MSS.0000000000000613
  • 27. Kouwijzer, I., Valize, M., Valent, L. J. M., Comtesse, P. G. P., Woude, L. H. V. van der ve Groot, S. de. (2019). The influence of protocol design on the identification of ventilatory thresholds and the attainment of peak physiological responses during synchronous arm crank ergometry in able-bodied participants. European Journal of Applied Physiology, 119(10), 2275-2286. https://doi.org/10.1007/s00421-019-04211-9
  • 28. Leo, J. A., Sabapathy, S., Simmonds, M. J. ve Cross, T. J. (2017). The respiratory compensation point is not a valid surrogate for critical power. Medicine and science in sports and exercise, 49(7), 1452-1460. https://doi.org/10.1249/MSS.0000000000001226
  • 29. Maturana, F. M., Fontana, F. Y., Pogliaghi, S., Passfield, L. ve Murias, J. M. (2018). Critical power: How different protocols and models affect its determination. Journal of Science and Medicine in Sport, 21(7), 742-747. https://doi.org/10.1016/j.jsams.2017.11.015
  • 30. McLoughlin, P., Popham, P., Linton, R. A., Bruce, R. C. ve Band, D. M. (1994). Exercise-induced changes in plasma potassium and the ventilatory threshold in man. The Journal of physiology, 479, 139-147. https://doi.org/10.1113/jphysiol.1994.sp020283
  • 31. Nicolò, A., Marcora, S. M. ve Sacchetti, M. (2020). Time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise. Journal of Applied Physiology, 128(5), 1447-1449. https://doi.org/10.1152/japplphysiol.00814.2019
  • 32. Norouzi, M., Çabuk, R., Balci, G. A., As, H. ve Özkaya, Ö. (2021). Farklı Tükenme Aralıkları ve Matematiksel Model Kullanımının Kritik Güç Tahminlerine Etkisi. Spor Bilimleri Dergisi, 32(3), 151-166. https://doi.org/10.17644/sbd.931304
  • 33. Oosterbaan, R. (2011). SegReg: Segmented linear regression with breakpoint and confidence intervals. https://www.waterlog.info/segreg.htm
  • 34. Ozkaya, O., Balci, G. A., As, H., Cabuk, R. ve Norouzi, M. (2022). Grey Zone: A Gap Between Heavy and Severe Exercise Domain. Journal of Strength and Conditioning Research, 36(1), 113-120. https://doi.org/10.1519/JSC.0000000000003427
  • 35. Ozkaya, O., Balci, G. A., As, H. ve Yildiztepe, E. (2021). A new technique to analyse threshold-intensities based on time dependent change-points in the ratio of minute ventilation and end-tidal partial pressure of carbon-dioxide production. Respiratory Physiology ve Neurobiology, 294, 103735.
  • 36. Paterson, D. J., Friedland, J. S., Bascom, D. A., Clement, I. D., Cunningham, D. A., Painter, R. ve Robbins, P. A. (1990). Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle’s syndrome. The journal of physiology, 429(1), 339-348. https://doi.org/10.1113/jphysiol.1990.sp018260
  • 37. Pettitt, R. W., Clark, I. E., Ebner, S. M., Sedgeman, D. T. ve Murray, S. R. (2013). Gas exchange threshold and VO2max testing for athletes: An update. Journal of strength and conditioning research, 27(2), 549-555. https://doi.org/10.1519/JSC.0b013e31825770d7
  • 38. Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B. ve Jones, A. M. (2016). Critical power: An important fatigue threshold in exercise physiology. Medicine and science in sports and exercise, 48(11), 2320-2334. https://doi.org/10.1249/MSS.0000000000000939
  • 39. Poole, D. C., Rossiter, H. B., Brooks, G. A. ve Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599(3), 737-767. https://doi.org/10.1113/JP279963
  • 40. Poole, D. C., Ward, S. A., Gardner, G. W., Whipp, B. J., Pooles, D. C., Ward, S. A., Gardner, G. W. ve Whipp, B. J. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9), 1265-1279. https://doi.org/10.1080/00140138808966766
  • 41. Rausch, S. M., Whipp, B. J., Wasserman, K. ve Huszczuk, A. (1991). Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. The Journal of physiology, 444, 567-578. https://doi.org/10.1113/jphysiol.1991.sp018894
  • 42. Reinhard, U., Müller, P. H. ve Schmülling, R. M. (1979). Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration; international review of thoracic diseases, 38(1), 36-42. https://doi.org/10.1159/000194056
  • 43. Rosendal, L., Blangsted, A. K., Kristiansen, J., Søgaard, K., Langberg, H., Sjøgaard, G. ve Kjaer, M. (2004). Interstitial muscle lactate, pyruvate and potassium dynamics in the trapezius muscle during repetitive low-force arm movements, measured with microdialysis. Acta physiologica Scandinavica, 182(4), 379-388. https://doi.org/10.1111/j.1365-201X.2004.01356.x
  • 44. Scheuermann, B. W. ve Kowalchuk, J. M. (1998). Attenuated respiratory compensation during rapidly incremented ramp exercise. Respiration Physiology, 114(3), 227-238. https://doi.org/10.1016/S0034-5687(98)00097-8
  • 45. Vanhatalo, A., Black, M. I., DiMenna, F. J., Blackwell, J. R., Schmidt, J. F., Thompson, C., Wylie, L. J., Mohr, M., Bangsbo, J., Krustrup, P. ve Jones, A. M. (2016). The mechanistic bases of the power–time relationship: Muscle metabolic responses and relationships to muscle fibre type. The Journal of Physiology, 594(15), 4407-4423. https://doi.org/10.1113/JP271879
  • 46. Voter, W. A. ve Gayeski, T. (1995). Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer. American Journal of Physiology-Heart and Circulatory Physiology, 269(4), H1328-H1341.
  • 47. Wasserman, K., Whipp, B. J., Koyal, S. N. ve Cleary, M. G. (1975). Effect of carotid body resection on ventilatory and acid-base control during exercise. Journal of applied physiology, 39(3), 354-358. https://doi.org/10.1152/jappl.1975.39.3.354
  • 48. Whipp, B. J., Huntsman, D. J., Stoner, N., Lamarra, N. ve Wasserman, K. (1982). A constant which determines the duration of tolerance of high-intensity work. Federation Proceedings, 41(5), 1591.
  • 49. Zuniga, J. M., Housh, T. J., Camic, C. L., Hendrix, C. R., Schmidt, R. J., Mielke, M. ve Johnson, G. O. (2010). A mechanomyographic fatigue threshold test for cycling. International Journal of Sports Medicine, 31(9), 636-643. https://doi.org/10.1055/s-0030-1255112

Solunumsal Yanıtlara Dayalı Yeni Bir Eşik Belirleme Yöntemi Olarak Respirasyon Eşiği ve Kritik Gücü Göstermedeki Başarısı

Yıl 2022, , 149 - 162, 31.10.2022
https://doi.org/10.17644/sbd.1107799

Öz

Yeni bir solunumsal eşik türü olarak ortaya atılan respirasyon eşiği (RE) kademeli bir rampa testinde dakika ventilasyonu bölü ekspirasyon sonu CO2 kısmi basıncı (VE/PETCO2) değerindeki zamana bağlı değişimlerin analizine dayanır. Ancak RE tekniğinin yaygın olarak kullanılan önemli bir eşik belirleme yöntemi olan kritik gücü (KG) hangi düzeyde işaret edebildiğine odaklanan bir araştırma bulgusu rapor edilmemiştir. Bu çalışmanın amacı, RE tekniği kullanılarak elde edilen egzersiz şiddetinin, KG’yi hangi düzeyde karşılayabildiğini araştırmaktır. Çalışmaya iyi antrene on erkek bisiklet sporcusu katılmıştır. Sporcuların gaz değişim eşiği (GDE), solunumsal kompanzasyon noktası (SKN) ve RE düzeyleri kademeli rampa testleriyle belirlenmiştir. Bu testlerde GDE ve SKN düzeyleri, Innocor sistemi yoluyla VCO2-VO2 ve VE-VCO2 ilişkilerinde saptanan kırılmalar tespit edilerek değerlendirilmiştir. RE düzeyi SegReg paket programı kullanılarak VE/PETCO2-zaman ilişkisindeki en güçlü kırılma noktası tespit edilerek bulunmuştur. Sonrasında KG’yi hesaplamak için farklı günlerde sabit iş oranlarında testler uygulanmıştır. Tüm eşik göstergelerinin birbirleriyle ilişkilerinin sınanması için geçerlik analizleri yapılmıştır. Bulgular, RE (328±35,5 W; 4,23±0,39 L·dk−1) ile SKN (324±34,3 W; 4,21±0,45 L·dk−1) güç çıktıları ve her birine ait VO2 yanıtları arasında yüksek bir ilişki ve uyum olduğunu göstermiştir (p>0,05; t= 1,19; r>0,96; % tahmini standart hata <5). Ancak hem RE hem de SKN güç çıktıları KG'den (298±32 W) yaklaşık %10 daha yüksek bulunmuştur (p<0,001). Çalışmamız, iyi antrene bisikletçilerde VE/PETCO2-zaman ilişkisinde oluşan en güçlü kırılmanın çok büyük bir başarı ile SKN’yi gösterdiğini, fakat KG’yi doğrudan belirlemede başarısız olduğunu ortaya koymuştur.

Kaynakça

  • 1. Atkinson, G. ve Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4), 217-238. https://doi.org/10.2165/00007256-199826040-00002
  • 2. Beaver, W. L., Wasserman, K. ve Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of applied physiology, 60(6), 2020-2027. https://doi.org/10.1152/jappl.1986.60.6.2020
  • 3. Beneke, R. (1995). Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Medicine and science in sports and exercise, 27(6), 863-867.
  • 4. Bergstrom, H. C., Housh, T. J., Cochrane, K. C., Jenkins, N. D. M., Lewis, R. W., Traylor, D. A., Zuniga, J. M., Schmidt, R. J., Johnson, G. O. ve Cramer, J. T. (2013). An examination of neuromuscular and metabolic fatigue thresholds. Physiological Measurement, 34(10), 1253-1267. https://doi.org/10.1088/0967-3334/34/10/1253
  • 5. Bergstrom, H. C., Housh, T. J., Zuniga, J. M., Traylor, D. A., Camic, C. L., Lewis, R. W., Schmidt, R. J. ve Johnson, G. O. (2013). The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Research quarterly for exercise and sport, 84(2), 232-238. https://doi.org/10.1080/02701367.2013.784723
  • 6. Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H. ve Schmid, J. P. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. European journal of cardiovascular prevention ve rehabilitation, 15(6), 726-734. https://doi.org/10.1097/HJR.0b013e328304fed4
  • 7. Black, M. I., Durant, J., Jones, A. M. ve Vanhatalo, A. (2014). Critical power derived from a 3-min all-out test predicts 16.1-km road time-trial performance. European Journal of Sport Science, 14(3), 217-223. https://doi.org/10.1080/17461391.2013.810306
  • 8. Black, M. I., Jones, A. M., Bailey, S. J. ve Vanhatalo, A. (2015). Self-pacing increases critical power and improves performance during severe-intensity exercise. Applied physiology, nutrition, and metabolism, 40(7), 662-670. https://doi.org/10.1139/apnm-2014-0442
  • 9. Black, M. I., Jones, A. M., Kelly, J. A., Bailey, S. J. ve Vanhatalo, A. (2016). The constant work rate critical power protocol overestimates ramp incremental exercise performance. European Journal of Applied Physiology, 116(11-12), 2415-2422. https://doi.org/10.1007/s00421-016-3491-y
  • 10. Bland, J. M. ve Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307-310. https://doi.org/10.1016/S0140-6736(86)90837-8
  • 11. Boone, J., Koppo, K. ve Bouckaert, J. (2008). The VO2 response to submaximal ramp cycle exercise: Influence of ramp slope and training status. Respiratory physiology ve neurobiology, 161(3), 291-297. https://doi.org/10.1016/J.RESP.2008.03.008
  • 12. Camic, C. L., Housh, T. J., Johnson, G. O., Hendrix, C. R., Zuniga, J. M., Mielke, M. ve Schmidt, R. J. (2010). An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry. European journal of applied physiology, 108(2), 337-345. https://doi.org/10.1007/s00421-009-1239-7
  • 13. Copp, S. W., Hirai, D. M., Musch, T. I. ve Poole, D. C. (2010). Critical speed in the rat: İmplications for hindlimb muscle blood flow distribution and fibre recruitment. The Journal of Physiology, 588(24), 5077-5087. https://doi.org/10.1113/jphysiol.2010.198382
  • 14. Crescêncio, J. C., Martins, L. E. B., Murta, L. O., Antloga, C. M., Kozuki, R. T., Santos, M. D. B., Neto, J. A. M., Maciel, B. C. ve Gallo, L. (2003). Measurement of anaerobic threshold during dynamic exercise in healthy subjects: Comparison among visual analysis and mathematical models. Computers in Cardiology, 2003, 801-804.
  • 15. Cross, T. ve Sabapathy, S. (2012). The Respiratory Compensation “Point” as a Determinant of O2 Uptake Kinetics? International Journal of Sports Medicine, 33(10), 854-854. https://doi.org/10.1055/s-0032-1321903
  • 16. Darabi, S., Dehghan, M., Refahi, S. ve Kiani, E. (2009). Ventilation, potassium and lactate during incremental exercise in men athletes. Research Journal of Biological Sciences, 4(4), 427-429.
  • 17. Dekerle, J., Baron, B., Dupont, L., Vanvelcenaher, J. ve Pelayo, P. (2003). Maximal lactate steady state, respiratory compensation threshold and critical power. European journal of applied physiology, 89(3), 281-288. https://doi.org/10.1007/s00421-002-0786-y
  • 18. Forster, H. V, Haouzi, P. ve Dempsey, J. A. (2012). Control of breathing during exercise. Comprehensive Physiology, 2(1), 743-777. https://doi.org/10.1002/cphy.c100045
  • 19. Galán-Rioja, M. Á., González-Mohíno, F., Poole, D. C. ve González-Ravé, J. M. (2020). Relative proximity of critical power and metabolic/ventilatory thresholds: Systematic review and meta-analysis. Sports Medicine, 50(10), 1771-1783. https://doi.org/10.1007/s40279-020-01314-8
  • 20. Greco, C. C., Caritá, R. A. C., Dekerle, J. ve Denadai, B. S. (2012). Effect of aerobic training status on both maximal lactate steady state and critical power. Applied Physiology, Nutrition and Metabolism, 37(4), 736-743. https://doi.org/10.1139/H2012-047
  • 21. Howley, E. T., Bassett, D. R. ve Welch, H. G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine and Science in Sports and Exercise, 27(9), 1292-1301. https://doi.org/10.1249/00005768-199509000-00009
  • 22. Jones, A. M., Burnley, M., Black, M. I., Poole, D. C. ve Vanhatalo, A. (2019). The maximal metabolic steady state: Redefining the ‘gold standard’. Physiological Reports, 7(10), e14098. https://doi.org/10.14814/phy2.14098
  • 23. Jones, A. M. ve Poole, D. C. (2009). Physiological demands of endurance exercise. Olympic Textbook of Science in Sport. Chichester, UK: Wiley-Blackwell Publishing, Chichester, UK, 43-55.
  • 24. Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J. ve Poole, D. C. (2008). Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294(2), R585-R593. https://doi.org/10.1152/ajpregu.00731.2007
  • 25. Karsten, B., Jobson, S. A., Hopker, J., Jimenez, A. ve Beedie, C. (2014). High agreement between laboratory and field estimates of critical power in cycling. International journal of sports medicine, 35(04), 298-303.
  • 26. Keir, D. A., Fontana, F. Y., Robertson, T. C., Murias, J. M., Paterson, D. H., Kowalchuk, J. M. ve Pogliaghi, S. (2015). Exercise intensity thresholds: Identifying the boundaries of sustainable performance. Medicine and Science in Sports and Exercise, 47(9), 1932-1940. https://doi.org/10.1249/MSS.0000000000000613
  • 27. Kouwijzer, I., Valize, M., Valent, L. J. M., Comtesse, P. G. P., Woude, L. H. V. van der ve Groot, S. de. (2019). The influence of protocol design on the identification of ventilatory thresholds and the attainment of peak physiological responses during synchronous arm crank ergometry in able-bodied participants. European Journal of Applied Physiology, 119(10), 2275-2286. https://doi.org/10.1007/s00421-019-04211-9
  • 28. Leo, J. A., Sabapathy, S., Simmonds, M. J. ve Cross, T. J. (2017). The respiratory compensation point is not a valid surrogate for critical power. Medicine and science in sports and exercise, 49(7), 1452-1460. https://doi.org/10.1249/MSS.0000000000001226
  • 29. Maturana, F. M., Fontana, F. Y., Pogliaghi, S., Passfield, L. ve Murias, J. M. (2018). Critical power: How different protocols and models affect its determination. Journal of Science and Medicine in Sport, 21(7), 742-747. https://doi.org/10.1016/j.jsams.2017.11.015
  • 30. McLoughlin, P., Popham, P., Linton, R. A., Bruce, R. C. ve Band, D. M. (1994). Exercise-induced changes in plasma potassium and the ventilatory threshold in man. The Journal of physiology, 479, 139-147. https://doi.org/10.1113/jphysiol.1994.sp020283
  • 31. Nicolò, A., Marcora, S. M. ve Sacchetti, M. (2020). Time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise. Journal of Applied Physiology, 128(5), 1447-1449. https://doi.org/10.1152/japplphysiol.00814.2019
  • 32. Norouzi, M., Çabuk, R., Balci, G. A., As, H. ve Özkaya, Ö. (2021). Farklı Tükenme Aralıkları ve Matematiksel Model Kullanımının Kritik Güç Tahminlerine Etkisi. Spor Bilimleri Dergisi, 32(3), 151-166. https://doi.org/10.17644/sbd.931304
  • 33. Oosterbaan, R. (2011). SegReg: Segmented linear regression with breakpoint and confidence intervals. https://www.waterlog.info/segreg.htm
  • 34. Ozkaya, O., Balci, G. A., As, H., Cabuk, R. ve Norouzi, M. (2022). Grey Zone: A Gap Between Heavy and Severe Exercise Domain. Journal of Strength and Conditioning Research, 36(1), 113-120. https://doi.org/10.1519/JSC.0000000000003427
  • 35. Ozkaya, O., Balci, G. A., As, H. ve Yildiztepe, E. (2021). A new technique to analyse threshold-intensities based on time dependent change-points in the ratio of minute ventilation and end-tidal partial pressure of carbon-dioxide production. Respiratory Physiology ve Neurobiology, 294, 103735.
  • 36. Paterson, D. J., Friedland, J. S., Bascom, D. A., Clement, I. D., Cunningham, D. A., Painter, R. ve Robbins, P. A. (1990). Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle’s syndrome. The journal of physiology, 429(1), 339-348. https://doi.org/10.1113/jphysiol.1990.sp018260
  • 37. Pettitt, R. W., Clark, I. E., Ebner, S. M., Sedgeman, D. T. ve Murray, S. R. (2013). Gas exchange threshold and VO2max testing for athletes: An update. Journal of strength and conditioning research, 27(2), 549-555. https://doi.org/10.1519/JSC.0b013e31825770d7
  • 38. Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B. ve Jones, A. M. (2016). Critical power: An important fatigue threshold in exercise physiology. Medicine and science in sports and exercise, 48(11), 2320-2334. https://doi.org/10.1249/MSS.0000000000000939
  • 39. Poole, D. C., Rossiter, H. B., Brooks, G. A. ve Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599(3), 737-767. https://doi.org/10.1113/JP279963
  • 40. Poole, D. C., Ward, S. A., Gardner, G. W., Whipp, B. J., Pooles, D. C., Ward, S. A., Gardner, G. W. ve Whipp, B. J. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9), 1265-1279. https://doi.org/10.1080/00140138808966766
  • 41. Rausch, S. M., Whipp, B. J., Wasserman, K. ve Huszczuk, A. (1991). Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. The Journal of physiology, 444, 567-578. https://doi.org/10.1113/jphysiol.1991.sp018894
  • 42. Reinhard, U., Müller, P. H. ve Schmülling, R. M. (1979). Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration; international review of thoracic diseases, 38(1), 36-42. https://doi.org/10.1159/000194056
  • 43. Rosendal, L., Blangsted, A. K., Kristiansen, J., Søgaard, K., Langberg, H., Sjøgaard, G. ve Kjaer, M. (2004). Interstitial muscle lactate, pyruvate and potassium dynamics in the trapezius muscle during repetitive low-force arm movements, measured with microdialysis. Acta physiologica Scandinavica, 182(4), 379-388. https://doi.org/10.1111/j.1365-201X.2004.01356.x
  • 44. Scheuermann, B. W. ve Kowalchuk, J. M. (1998). Attenuated respiratory compensation during rapidly incremented ramp exercise. Respiration Physiology, 114(3), 227-238. https://doi.org/10.1016/S0034-5687(98)00097-8
  • 45. Vanhatalo, A., Black, M. I., DiMenna, F. J., Blackwell, J. R., Schmidt, J. F., Thompson, C., Wylie, L. J., Mohr, M., Bangsbo, J., Krustrup, P. ve Jones, A. M. (2016). The mechanistic bases of the power–time relationship: Muscle metabolic responses and relationships to muscle fibre type. The Journal of Physiology, 594(15), 4407-4423. https://doi.org/10.1113/JP271879
  • 46. Voter, W. A. ve Gayeski, T. (1995). Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer. American Journal of Physiology-Heart and Circulatory Physiology, 269(4), H1328-H1341.
  • 47. Wasserman, K., Whipp, B. J., Koyal, S. N. ve Cleary, M. G. (1975). Effect of carotid body resection on ventilatory and acid-base control during exercise. Journal of applied physiology, 39(3), 354-358. https://doi.org/10.1152/jappl.1975.39.3.354
  • 48. Whipp, B. J., Huntsman, D. J., Stoner, N., Lamarra, N. ve Wasserman, K. (1982). A constant which determines the duration of tolerance of high-intensity work. Federation Proceedings, 41(5), 1591.
  • 49. Zuniga, J. M., Housh, T. J., Camic, C. L., Hendrix, C. R., Schmidt, R. J., Mielke, M. ve Johnson, G. O. (2010). A mechanomyographic fatigue threshold test for cycling. International Journal of Sports Medicine, 31(9), 636-643. https://doi.org/10.1055/s-0030-1255112
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Hekimliği
Bölüm Makaleler
Yazarlar

Hakan As 0000-0002-1848-6251

Görkem Aybars Balcı 0000-0002-5720-1706

Engin Yıldıztepe 0000-0002-7617-4934

Özgür Özkaya 0000-0003-4222-5761

Yayımlanma Tarihi 31 Ekim 2022
Gönderilme Tarihi 22 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA As, H., Balcı, G. A., Yıldıztepe, E., Özkaya, Ö. (2022). Solunumsal Yanıtlara Dayalı Yeni Bir Eşik Belirleme Yöntemi Olarak Respirasyon Eşiği ve Kritik Gücü Göstermedeki Başarısı. Spor Bilimleri Dergisi, 33(3), 149-162. https://doi.org/10.17644/sbd.1107799

9551


SPOR BİLİMLERİ DERGİSİ


Yayın hakkı © Hacettepe Üniversitesi Spor Bilimleri Fakültesi