Araştırma Makalesi
PDF EndNote BibTex Kaynak Göster

Diz ve Kalça Kas Kuvvetinin Kademeli ve Sabit Test Protokolleri Sırasındaki Maksimum Oksijen Tüketim Parametrelerine Etkisinin Karşılaştırılması

Yıl 2022, Cilt 33, Sayı 1, 32 - 42, 14.04.2022
https://doi.org/10.17644/sbd.995087

Öz

Doğrulayıcı VO2maks testi, aynı katılımcılarda karşılaştırılabilir testlerden elde edilen ölçümlerin tekrarlanabilirliğini incelemeye olanak sağlarken farklı test koşulları sırasında nöromüsküler performansın VO2maks ile ilişkili olup olmadığını doğrulamaya yardımcı olur. Bu çalışmanın temel amacı, kademeli koşu bandı ve bisiklet protokolleri kullanılarak elde edilen VO2maks değerlerini karşılaştırmak ve sonuçların sabit hızda uygulanan doğrulayıcı test protokolleri esnasında da tekrarlanabilir olup olmadığını doğrulamaktır. Çalışmanın ikinci amacı ise, kalça ve diz kas kuvvetinin dört farklı test koşulu sırasında VO2maks performansına olan katkılarını karakterize etmek ve belirli bir egzersiz yoğunluğu için egzersiz modalitesini değiştirirken bu miktarların nasıl değiştiğini belirlemektir. Çalışma dizaynı olarak tekrarlanan ölçümler çalışma tasarımı kullanıldı. Toplam 20 sağlıklı erkek katılımcıya (21.20±2.17 yıl), 24 saatlik aralıklarla koşu bandı ve bisiklet ergometrelerinde ön VO2maks testleri uygulandı. Kalça ve diz kaslarının izokinetik güç performansı 60o/sn açısal hızda test edildi. Gruplar arası ve grup içi karşılaştırmalar için eşleştirilmiş ve bağımsız örneklem t testi uygulandı. Her iki test modalitesinde eld e edilen VO2maks test çıktılarının kalça ve diz kas kuvvet parametreleri tarafından açıklanan varyans yüzdesini belirlemek için doğrusal regresyon analizi uygulandı. İzokinetik kalça ve diz kas kuvvet değerleri baskın ve baskın olmayan ekstremite arasında simetrikti (p>0.05). VO2maks ve kan laktat konsantrasyonu, her iki test yöntemi için de sabit test protokolleri sırasında istatistiksel olarak daha yüksek bulundu (p<0.001). Kalça kas kuvvet performansının VO2maks performansına olan katkısı hem artan (bisiklet r2 = 0.25, koşu r2 = 0.24) hem de sabit (bisiklet r2 = 0.35, koşu r2 = 0.33) test protokolleri sırasında diz kas kuvvetinin kademeli (bisiklet r 2 = 0.17, koşu r 2 = 0.17) ve sabit hızda (döngüsel r2 = 0.23, çalışan r2 = 0.18) gerçekleştirilen testlerden elde edilen VO2maks parametrelerine olan katkısına kıyasla daha büyük bir varyasyonu açıkladı. Bu nedenle, kalça ve diz kaslarının lokal kas performansı, koşu ve bisiklet mekaniğindeki değişikliklerle güçlü bir şekilde ilişkili olduğu görülürken kalça kaslarının sabit protokoller sırasında VO2maks performansına olan katkısı diz kaslarının katkısına oranla daha yüksek bulundu. Sonuç olarak, VO2maks testi sırasında alt ekstremite kaslarının katkısının derecesi, test yöntem inden çok egzersiz moduna bağlı olduğu söylenebilir.

Kaynakça

  • 1. O'Toole, M. L., & Douglas, P. S. (1995). Applied physiology of triathlon. Sports medicine (Auckland, N.Z.), 19(4), 251–267. https://doi.org/10.2165/00007256-199519040-00003
  • 2. Sleivert, G. G., & Rowlands, D. S. (1996). Physical and physiological factors associated with success in the triathlon. Sports medicine (Auckland, N.Z.), 22(1), 8–18. https://doi.org/10.2165/00007256-199622010-00002
  • 3. Albouaini, K., Egred, M., Alahmar, A., & Wright, D. J. (2007). Cardiopulmonary exercise testing and its application. Postgraduate medical journal, 83(985), 675–682. https://doi.org/10.1136/hrt.2007.121558
  • 4. Billat, V. L., Richard, R., Binsse, V. M., Koralsztein, J. P., & Haouzi, P. (1998). The V(O2) slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. Journal of applied physiology, 85(6), 2118–2124. https://doi.org/10.1152/jappl.1998.85.6.2118
  • 5. Millet, G. P., Vleck, V. E., & Bentley, D. J. (2009). Physiological differences between cycling and running: lessons from triathletes. Sports medicine (Auckland, N.Z.), 39(3), 179–206. https://doi.org/10.2165/00007256-200939030-00002
  • 6. Basset, F. A., & Boulay, M. R. (2000). Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. European journal of applied physiology, 81(3), 214–221. https://doi.org/10.1007/s004210050033
  • 7. Camic, C. L., Kovacs, A. J., Enquist, E. A., McLain, T. A., & Hill, E. C. (2015). Muscle activation of the quadriceps and hamstrings during incremental running. Muscle & nerve, 52(6), 1023–1029. https://doi.org/10.1002/mus.24901
  • 8. Heiderscheit, B. C., Chumanov, E. S., Michalski, M. P., Wille, C. M., & Ryan, M. B. (2011). Effects of step rate manipulation on joint mechanics during running. Medicine and science in sports and exercise, 43(2), 296–302. https://doi.org/10.1249/MSS.0b013e3181ebedf4
  • 9. Farrell, K. C., Reisinger, K. D., & Tillman, M. D. (2003). Force and repetition in cycling: possible implications for iliotibial band friction syndrome. The Knee, 10(1), 103–109. https://doi.org/10.1016/s0968-0160(02)00090-x
  • 10. Sousa, A., Figueiredo, P., Zamparo, P., Pyne, D. B., Vilas-Boas, J. P., & Fernandes, R. J. (2015). Exercise Modality Effect on Bioenergetical Performance at V˙O2max Intensity. Medicine and science in sports and exercise, 47(8), 1705–1713. https://doi.org/10.1249/MSS.0000000000000580
  • 11. Myers, J., Buchanan, N., Walsh, D., Kraemer, M., McAuley, P., Hamilton-Wessler, M., & Froelicher, V. F. (1991). Comparison of the ramp versus standard exercise protocols. Journal of the American College of Cardiology, 17(6), 1334–1342. https://doi.org/10.1016/s0735-1097(10)80144-5
  • 12. Muscat, K. M., Kotrach, H. G., Wilkinson-Maitland, C. A., Schaeffer, M. R., Mendonca, C. T., & Jensen, D. (2015). Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 40(11), 1199–1209. https://doi.org/10.1139/apnm-2015-0179
  • 13. Carter, H., Jones, A. M., Barstow, T. J., Burnley, M., Williams, C. A., & Doust, J. H. (2000). Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. Journal of applied physiology (Bethesda, Md. : 1985), 89(3), 899–907. https://doi.org/10.1152/jappl.2000.89.3.899
  • 14. Hill, D. W., Halcomb, J. N., & Stevens, E. C. (2003). Oxygen uptake kinetics during severe intensity running and cycling. European journal of applied physiology, 89(6), 612–618. https://doi.org/10.1007/s00421-002-0779-x
  • 15. Jones, A. M., & McConnell, A. M. (1999). Effect of exercise modality on oxygen uptake kinetics during heavy exercise. European journal of applied physiology and occupational physiology, 80(3), 213–219. https://doi.org/10.1007/s004210050584
  • 16. Okita, K., Nishijima, H., Yonezawa, K., Ohtsubo, M., Hanada, A., Kohya, T., Murakami, T., & Kitabatake, A. (1998). Skeletal muscle metabolism in maximal bicycle and treadmill exercise distinguished by using in vivo metabolic freeze method and phosphorus-31 magnetic resonance spectroscopy in normal men. The American journal of cardiology, 81(1), 106-109. https://doi.org/10.1016/s0002-9149(97)00857-6
  • 17. Porszasz, J., Casaburi, R., Somfay, A., Woodhouse, L.J., Whipp, B.J. (2003). A treadmill ramp protocol using simultaneous changes in speed and grade. Med Sci Sports Exerc, 35(9):1596–1603. doi: 10.1249/01.mss.0000084593.56786.da.
  • 18. Tanner, D.A., Duke, J.W., Stager, J.M. (2014). Ventilatory patterns differ between maximal running and cycling. Respir Physiol Neurobiol, 191(1):9–16. doi: 10.1016/j.resp.2013.10.011.
  • 19. Yoon, B. K., Kravitz, L., & Robergs, R. (2007). VO2max, protocol duration, and the VO2 plateau. Medicine and science in sports and exercise, 39(7), 1186–1192. https://doi.org/10.1249/mss.0b13e318054e304
  • 20. Chumanov, E. S., Wille, C. M., Michalski, M. P., & Heiderscheit, B. C. (2012). Changes in muscle activation patterns when running step rate is increased. Gait & posture, 36(2), 231–235. https://doi.org/10.1016/j.gaitpost.2012.02.023
  • 21. Semciw, A.I., Green, R.A., Murley, G.S., & Pizzari, T. (2014). Gluteus minimus: an intramuscular EMG investigation of anterior and posterior segments during gait. Gait Posture, 39:822–826. doi: 10.1016/j.gaitpost.2013.11.008
  • 22. Dorn, T. W., Schache, A. G., & Pandy, M. G. (2012). Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. The Journal of experimental biology, 215(Pt 11), 1944–1956. https://doi.org/10.1242/jeb.064527
  • 23. Lenhart, R. L., Thelen, D. G., Wille, C. M., Chumanov, E. S., & Heiderscheit, B. C. (2014). Increasing running step rate reduces patellofemoral joint forces. Medicine and science in sports and exercise, 46(3), 557–564. https://doi.org/10.1249/MSS.0b013e3182a78c3a
  • 24. Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A., Rosemond, D., & Pandy, M. G. (2011). Effect of running speed on lower limb joint kinetics. Medicine and science in sports and exercise, 43(7), 1260-1271. https://doi.org/10.1249/MSS.0b013e3182084929
  • 25. Souza, R. B., & Powers, C. M. (2009). Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. The Journal of orthopaedic and sports physical therapy, 39(1), 12–19. https://doi.org/10.2519/jospt.2009.2885
  • 26. Neumann, D.A. (2010). Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther. 40:82–94. doi: 10.2519/jospt.2010.3025
  • 27. Lenhart, R., Thelen, D., & Heiderscheit, B. (2014). Hip muscle loads during running at various step rates. The Journal of orthopaedic and sports physical therapy, 44(10), 766–A4. https://doi.org/10.2519/jospt.2014.5575
  • 28. Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., D'Andrea, S., Davis, I. S., Mang'eni, R. O., & Pitsiladis, Y. (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 463(7280), 531–535. https://doi.org/10.1038/nature08723
  • 29. Heiderscheit, B. C., Sherry, M. A., Silder, A., Chumanov, E. S., & Thelen, D. G. (2010). Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. The Journal of orthopaedic and sports physical therapy, 40(2), 67–81. https://doi.org/10.2519/jospt.2010.3047
  • 30. Arampatzis, A., Brüggemann, G. P., & Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of biomechanics, 32(12), 1349–1353. https://doi.org/10.1016/s0021-9290(99)00133-5
  • 31. Miura, H., Araki, H., Matoba, H., & Kitagawa, K. (2000). Relationship among oxygenation, myoelectric activity, and lactic acid accumulation in vastus lateralis muscle during exercise with constant work rate. International journal of sports medicine, 21(3), 180–184. https://doi.org/10.1055/s-2000-301
  • 32. Shinohara, M., Kouzaki, M., Yoshihisa, T., & Fukunaga, T. (1997) Mechanomyography of the human quadriceps muscle during incremental cycle ergometry. Eur J Appl Physiol 76:314–319. doi: 10.1007/s004210050254

Comparison of the Contributions of Knee and Hip Muscle Strength on Maximum Oxygen Consumption Parameters During Continuous and Constant Test Protocols

Yıl 2022, Cilt 33, Sayı 1, 32 - 42, 14.04.2022
https://doi.org/10.17644/sbd.995087

Öz

Preliminary VO2max verification testing allows to examine the reproducibility of comparable tests in the same participants and helps to verify whether neuromuscular performance is associated with VO2max during different testing conditions. The main purpose of this study was to compare VO2max values obtained using a graded treadmill and cycling protocols and to verify whether the results are also reproducible during the constant time to exhaustion testing protocols. The second rationale of the study was to characterize the contributions of hip and knee muscle strength during four different testing conditions, and to determine how these quantities change when altering the modality of exercise for a given exercise intensity. A repeated measures study design was used. A total of 20 healthy male participants (21.20±2.17 years) underwent preliminary VO2max testing sessions on treadmill and cycling ergometers with 24 h intervals. Isokinetic strength performance of hip and knee muscles was tested at 60o /sec angular velocity. A paired and independent sample t test was performed for inter group and intra group comparisons. Linear regression was applied to determine the percentage of variation in VO2max testing outputs during either testing modality explained by hip and knee muscle streng th parameters. Lower extremity strength characteristics of hip and knee were symmetric between the dominant and nondominant limb (p>0.05). VO2max and blood lactate concentration were significantly greater during constant testing protocols for either testi ng modalities (p<0.001). Hip muscle strength performance explained a greater variation in VO 2max parameters during incremental (cycling r2 =0.25, running r2 = 0.24) and constant (cycling r2 = 0.35, running r2 = 0.33) testing protocols for either testing modal ity compared to the contribution of knee muscle strength performance on VO2max parameters during incremental (cycling r2 = 0.17, running r2 = 0.17) and constant (cycling r2 = 0.23, running r2 = 0.18) testing protocols. The local muscular performance of the hip and knee muscles were strongly related with the changes in running and cycling mechanics and hip muscles had a greater contribution to the VO2max performance during constant protocols than knee muscles . In conclusion, the extent to which contribution of lower extremity muscles during VO2max testing relies more on the mode of the exercise rather than the type of the testing modality.

Kaynakça

  • 1. O'Toole, M. L., & Douglas, P. S. (1995). Applied physiology of triathlon. Sports medicine (Auckland, N.Z.), 19(4), 251–267. https://doi.org/10.2165/00007256-199519040-00003
  • 2. Sleivert, G. G., & Rowlands, D. S. (1996). Physical and physiological factors associated with success in the triathlon. Sports medicine (Auckland, N.Z.), 22(1), 8–18. https://doi.org/10.2165/00007256-199622010-00002
  • 3. Albouaini, K., Egred, M., Alahmar, A., & Wright, D. J. (2007). Cardiopulmonary exercise testing and its application. Postgraduate medical journal, 83(985), 675–682. https://doi.org/10.1136/hrt.2007.121558
  • 4. Billat, V. L., Richard, R., Binsse, V. M., Koralsztein, J. P., & Haouzi, P. (1998). The V(O2) slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. Journal of applied physiology, 85(6), 2118–2124. https://doi.org/10.1152/jappl.1998.85.6.2118
  • 5. Millet, G. P., Vleck, V. E., & Bentley, D. J. (2009). Physiological differences between cycling and running: lessons from triathletes. Sports medicine (Auckland, N.Z.), 39(3), 179–206. https://doi.org/10.2165/00007256-200939030-00002
  • 6. Basset, F. A., & Boulay, M. R. (2000). Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. European journal of applied physiology, 81(3), 214–221. https://doi.org/10.1007/s004210050033
  • 7. Camic, C. L., Kovacs, A. J., Enquist, E. A., McLain, T. A., & Hill, E. C. (2015). Muscle activation of the quadriceps and hamstrings during incremental running. Muscle & nerve, 52(6), 1023–1029. https://doi.org/10.1002/mus.24901
  • 8. Heiderscheit, B. C., Chumanov, E. S., Michalski, M. P., Wille, C. M., & Ryan, M. B. (2011). Effects of step rate manipulation on joint mechanics during running. Medicine and science in sports and exercise, 43(2), 296–302. https://doi.org/10.1249/MSS.0b013e3181ebedf4
  • 9. Farrell, K. C., Reisinger, K. D., & Tillman, M. D. (2003). Force and repetition in cycling: possible implications for iliotibial band friction syndrome. The Knee, 10(1), 103–109. https://doi.org/10.1016/s0968-0160(02)00090-x
  • 10. Sousa, A., Figueiredo, P., Zamparo, P., Pyne, D. B., Vilas-Boas, J. P., & Fernandes, R. J. (2015). Exercise Modality Effect on Bioenergetical Performance at V˙O2max Intensity. Medicine and science in sports and exercise, 47(8), 1705–1713. https://doi.org/10.1249/MSS.0000000000000580
  • 11. Myers, J., Buchanan, N., Walsh, D., Kraemer, M., McAuley, P., Hamilton-Wessler, M., & Froelicher, V. F. (1991). Comparison of the ramp versus standard exercise protocols. Journal of the American College of Cardiology, 17(6), 1334–1342. https://doi.org/10.1016/s0735-1097(10)80144-5
  • 12. Muscat, K. M., Kotrach, H. G., Wilkinson-Maitland, C. A., Schaeffer, M. R., Mendonca, C. T., & Jensen, D. (2015). Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 40(11), 1199–1209. https://doi.org/10.1139/apnm-2015-0179
  • 13. Carter, H., Jones, A. M., Barstow, T. J., Burnley, M., Williams, C. A., & Doust, J. H. (2000). Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. Journal of applied physiology (Bethesda, Md. : 1985), 89(3), 899–907. https://doi.org/10.1152/jappl.2000.89.3.899
  • 14. Hill, D. W., Halcomb, J. N., & Stevens, E. C. (2003). Oxygen uptake kinetics during severe intensity running and cycling. European journal of applied physiology, 89(6), 612–618. https://doi.org/10.1007/s00421-002-0779-x
  • 15. Jones, A. M., & McConnell, A. M. (1999). Effect of exercise modality on oxygen uptake kinetics during heavy exercise. European journal of applied physiology and occupational physiology, 80(3), 213–219. https://doi.org/10.1007/s004210050584
  • 16. Okita, K., Nishijima, H., Yonezawa, K., Ohtsubo, M., Hanada, A., Kohya, T., Murakami, T., & Kitabatake, A. (1998). Skeletal muscle metabolism in maximal bicycle and treadmill exercise distinguished by using in vivo metabolic freeze method and phosphorus-31 magnetic resonance spectroscopy in normal men. The American journal of cardiology, 81(1), 106-109. https://doi.org/10.1016/s0002-9149(97)00857-6
  • 17. Porszasz, J., Casaburi, R., Somfay, A., Woodhouse, L.J., Whipp, B.J. (2003). A treadmill ramp protocol using simultaneous changes in speed and grade. Med Sci Sports Exerc, 35(9):1596–1603. doi: 10.1249/01.mss.0000084593.56786.da.
  • 18. Tanner, D.A., Duke, J.W., Stager, J.M. (2014). Ventilatory patterns differ between maximal running and cycling. Respir Physiol Neurobiol, 191(1):9–16. doi: 10.1016/j.resp.2013.10.011.
  • 19. Yoon, B. K., Kravitz, L., & Robergs, R. (2007). VO2max, protocol duration, and the VO2 plateau. Medicine and science in sports and exercise, 39(7), 1186–1192. https://doi.org/10.1249/mss.0b13e318054e304
  • 20. Chumanov, E. S., Wille, C. M., Michalski, M. P., & Heiderscheit, B. C. (2012). Changes in muscle activation patterns when running step rate is increased. Gait & posture, 36(2), 231–235. https://doi.org/10.1016/j.gaitpost.2012.02.023
  • 21. Semciw, A.I., Green, R.A., Murley, G.S., & Pizzari, T. (2014). Gluteus minimus: an intramuscular EMG investigation of anterior and posterior segments during gait. Gait Posture, 39:822–826. doi: 10.1016/j.gaitpost.2013.11.008
  • 22. Dorn, T. W., Schache, A. G., & Pandy, M. G. (2012). Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. The Journal of experimental biology, 215(Pt 11), 1944–1956. https://doi.org/10.1242/jeb.064527
  • 23. Lenhart, R. L., Thelen, D. G., Wille, C. M., Chumanov, E. S., & Heiderscheit, B. C. (2014). Increasing running step rate reduces patellofemoral joint forces. Medicine and science in sports and exercise, 46(3), 557–564. https://doi.org/10.1249/MSS.0b013e3182a78c3a
  • 24. Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A., Rosemond, D., & Pandy, M. G. (2011). Effect of running speed on lower limb joint kinetics. Medicine and science in sports and exercise, 43(7), 1260-1271. https://doi.org/10.1249/MSS.0b013e3182084929
  • 25. Souza, R. B., & Powers, C. M. (2009). Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. The Journal of orthopaedic and sports physical therapy, 39(1), 12–19. https://doi.org/10.2519/jospt.2009.2885
  • 26. Neumann, D.A. (2010). Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther. 40:82–94. doi: 10.2519/jospt.2010.3025
  • 27. Lenhart, R., Thelen, D., & Heiderscheit, B. (2014). Hip muscle loads during running at various step rates. The Journal of orthopaedic and sports physical therapy, 44(10), 766–A4. https://doi.org/10.2519/jospt.2014.5575
  • 28. Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., D'Andrea, S., Davis, I. S., Mang'eni, R. O., & Pitsiladis, Y. (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 463(7280), 531–535. https://doi.org/10.1038/nature08723
  • 29. Heiderscheit, B. C., Sherry, M. A., Silder, A., Chumanov, E. S., & Thelen, D. G. (2010). Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. The Journal of orthopaedic and sports physical therapy, 40(2), 67–81. https://doi.org/10.2519/jospt.2010.3047
  • 30. Arampatzis, A., Brüggemann, G. P., & Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of biomechanics, 32(12), 1349–1353. https://doi.org/10.1016/s0021-9290(99)00133-5
  • 31. Miura, H., Araki, H., Matoba, H., & Kitagawa, K. (2000). Relationship among oxygenation, myoelectric activity, and lactic acid accumulation in vastus lateralis muscle during exercise with constant work rate. International journal of sports medicine, 21(3), 180–184. https://doi.org/10.1055/s-2000-301
  • 32. Shinohara, M., Kouzaki, M., Yoshihisa, T., & Fukunaga, T. (1997) Mechanomyography of the human quadriceps muscle during incremental cycle ergometry. Eur J Appl Physiol 76:314–319. doi: 10.1007/s004210050254

Ayrıntılar

Birincil Dil İngilizce
Konular Spor Bilimleri
Yayınlanma Tarihi Bahar
Bölüm Makaleler
Yazarlar

Nasuh Evrim ACAR>
MERSİN ÜNİVERSİTESİ, SPOR BİLİMLERİ FAKÜLTESİ
0000-0003-0423-1642
Türkiye


Gökhan UMUTLU> (Sorumlu Yazar)
Mersin University
0000-0002-4736-8772
Türkiye

Yayımlanma Tarihi 14 Nisan 2022
Başvuru Tarihi 14 Eylül 2021
Kabul Tarihi 1 Şubat 2022
Yayınlandığı Sayı Yıl 2022, Cilt 33, Sayı 1

Kaynak Göster

APA Acar, N. E. & Umutlu, G. (2022). Comparison of the Contributions of Knee and Hip Muscle Strength on Maximum Oxygen Consumption Parameters During Continuous and Constant Test Protocols . Spor Bilimleri Dergisi , 33 (1) , 32-42 . DOI: 10.17644/sbd.995087