Derleme
BibTex RIS Kaynak Göster

Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası ve Endotoksemi

Yıl 2021, Cilt: 5 Sayı: 1, 37 - 46, 24.12.2021

Öz

Gastrointestinal sistemdeki bakteri türü ve konsantrasyonu fetal hayattan yaşlılığa kadar birçok etkenin etkisiyle değişime uğramaktadır. Kronik böbrek yetmezliği (KBY) görülen bireylerde artan üremi, metabolik asidoz, verilen diyet kısıtlamaları, uygulanan tıbbi tedavilerin etkisi, kolonik geçiş zamanının uzaması gibi birçok neden intestinal mikrobiyota florasında ve fonksiyonunda değişmelere neden olmaktadır. Bu değişiklikler kolonun mikrobiyal protein fermantasyonunu değiştirmekte ve üremik toksinlerin oluşumunu arttırmaktadır. Bu toksik maddeler intestinal lümendeki sıkı bağlantı (tight junction) proteinlerine zarar vermekte ve bağırsağın koruyucu epitelyal bariyerini bozmaktadır. Sonuçta bağırsak kaynaklı üremik toksinler sistemik dolaşıma geçmekte KBY progresyonuna, kardiyovasküler hastalıklara (KVH), insülin direncine, inflamasyona ve protein-enerji malnütrisyonuna katkıda bulunmaktadır.

Kaynakça

  • 1. Akpolat, T. ve Utaş, CHemodiyaliz hekimi el kitabı 1, Samsun: Türk Nefroliji Derneği Yayınları. 2007.
  • 2. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al.NIH HMP Working Group, The NIH Human Microbiome Project. Genome Res 2009;19:2317-2323
  • 3. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65
  • 4. Fraher MH, O’Toole PW, Quigley EMM: Techniques used to characterize the gut microbiota: A guide for the clinician. Nat Rev Gastro Hepat 2012;9:312-322
  • 5. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E: Dysbiosis and the immune system. Nat Rev Immunol 2017;17:219-232
  • 6. Shreiner AB, Kao JY, Young VB: The gut microbiome in health and in disease. Curr Opin Gastroenterol 2015;31:69-75
  • 7. Aron-Wisnewsky J, Clement K: The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 2016;12:169-181
  • 8. Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E: The gut microbiome in human neurological disease: A review. Ann Neurol 2017;81:369-382
  • 9. Iqbal S, Quigley EM: Progress in our understanding of the gut microbiome: Implications for the clinician. Curr Gastroenterol Rep 2016;18:49
  • 10. Lin L, Zhang J: Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017;18:2
  • 11. Wing MR, Patel SS, Ramezani A, Raj DS: Gut microbiome in chronic kidney disease. Exp Physiol 2016;101:471-477
  • 12. Krishnamurthy VMR, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 2012;81:300-306
  • 13. B. Sampaio-Maia, L. Simoes-Silva, M. Pestana,, R. Araujo, and I.J. Soares-Silva: The Role of the Gut Microbiome on Chronic Kidney Disease. Advances in Applied Microbiology.2016; 96:0065-2164
  • 14. Liabeuf S, Neirynck N, Drueke TB, Vanholder R, Massy ZA: Clinical studies and chronic kidney disease: What did we learn recently? Semin Nephrol 2014;34:164-179
  • 15. Vanholder R, Glorieux G: The intestine and the kidneys: A bad marriage can be hazardous. Clin Kidney J 2015;8:168-179
  • 16. Vaziri ND, Zhao YY, Pahl MV: Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: The nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant 2016;31:737-746
  • 17. Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013;83:308-315
  • 18. Moraes C, Borges NA, Mafra D: Resistant starch for modulation of gut microbiota: Promising adjuvant therapy for chronic kidney disease patients? Eur J Nutr (2016) 55:1813-1821
  • 19. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND: Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 2014;39:230-237
  • 20. Zeng H, Chi H: Metabolic control of regulatory T cell development and function. Trends Immunol 2015;36:3-12
  • 21. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al.The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569-573
  • 22. Hendrikx TK, van Gurp EA, Mol WM, Schoordijk W, Sewgobind VD, Ijzermans JN, et al. End-stage renal failure and regulatory activities of CD4+CD25bright+FoxP3+ T-cells. Nephrol Dial Transplant 2009;24:1969-1978
  • 23. Vaziri ND, Pahl MV, Crum A, Norris K: Effect of uremia on structure and function of immune system. J Ren Nutr 2012;22:149-156
  • 24. Ramezani A, Raj DS: The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014;25:657-670
  • 25. Vaziri ND, Yuan J, Rahimi A, Ni Z, Said H, Subramanian VS:Disintegration of colonic epithelial tight junction in uremia: A likely cause of CKD-associated inflammation. Nephrol Dial Transplant 2012;27:2686-2693
  • 26. Wang F, Jiang H, Shi K, Ren Y, Zhang P, Cheng S: Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology (Carlton) 2012;17:733-738
  • 27. Wang IK, Lai HC, Yu CJ, Liang CC, Chang CT, Kuo HL, et al.Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients. Appl Environ Microbiol 2012;78:1107-1112
  • 28. Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS: Role of the gut microbiome in uremia: A potential therapeutic target. Am J Kidney Dis 2016;67:483-498
  • 29. Vaziri ND, Yuan J, Norris K: Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 2013;37:1-6
  • 30. Vaziri ND, Goshtasbi N, Yuan J, Jellbauer S, Moradi H, Raffatellu M, et al.Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol 2012;36:438-443
  • 31. Rossi M, Campbell KL, Johnson DW, Stanton T, Vesey DA, Coombes JS, et al. Protein-bound uremic toxins, inflammation and oxidative stress: A cross-sectional study in stage 3-4 chronic kidney disease. Arch Med Res 2014;45:309-317
  • 32. Shi K, Wang F, Jiang H, Liu H, Wei M, Wang Z, et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci 2014;59:2109-2117
  • 33. Ritz E. Intestinal-renal syndrome: Mirage or reality? Blood Purif 2011;31:70-76
  • 34. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. and Bäckhed, F. (2015). Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metabolism, 22(4), 658-668.
  • 35. Jeffery, I. and O'Toole, P. (2013). Diet-microbiota interactions and their implications for healthy living. Nutrients, 5(1), 234-252.
  • 36. Duncan, S., Belenguer, A., Holtrop, G., Johnstone, A., Flint, H. and Lobley, G. (2006). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73(4), 1073-1078.
  • 37. Kieffer DA, Martin RJ, Adams SH: Impact of dietary fibers on nutrient management and detoxification organs: Gut, liver, and kidneys. Adv Nutr 2016;7:1111-1121
  • 38. Zeng H, Chi H: Metabolic control of regulatory T cell development and function. Trends Immunol 2015;36:3-12
  • 39. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569-573
  • 40. Evenepoel P, Poesen R, Meijers B: The gut-kidney axis. Pediatr Nephrol. 2016 Nov 15.
  • 41. Krishnamurthy VMR, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL, Greene T, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 2012;81:300-306,
  • 42. Chiavaroli L, Mirrahimi A, Sievenpiper JL, Jenkins DJ, Darlin PB: Dietary fiber effects in chronic kidney disease: A systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 2015;69:761-768
  • 43. Macfarlane, S. and Macfarlane, G. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 2003; 62(01), 67-72.
  • 44. Sonnenburg, E., Smits, S., Tikhonov, M., Higginbottom, S., Wingreen, N., Sonnenburg, J. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016;529(7585), 212-215.
  • 45. Tap, J., Furet, J., Bensaada, M., Philippe, C., Roth, H., Rabot, S., et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environmental Microbiology, 2015;17(12), 4954-4964.
  • 46. Healey, G., Murphy, R., Butts, C., Brough, L., Whelan, K., Coad, J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. British Journal of Nutrition, 2018;119(2), 176-189.
  • 47. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J., Massart, S., et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences, 2010;107(33), 14691-14696.
  • 48. Reddy, B. S., Weisburger, J. H. and Wynder, E. L. Efects of high risk and low risk diets for colon carcinogenesis on fecal microfora and steroids in man. Journal of Nutrition, 1975;105,878–884.
  • 49. Dominika, Ś., Arjan, N., Karyn, R. and Henryk, K. The study on the impact of glycated pea proteins on human intestinal bacteria. International Journal of Food Microbiology, 2011;145(1), 267-272.
  • 50. Meddah, A., Yazourh, A., Desmet, I., Risbourg, B., Verstraete, W.,Romond, M. The regulatory effects of whey retentate from Bifidobacteria fermented milk on the microbiota of the Simulator of the human intestinal microbial ecosystem (SHIME). Journal of Applied Microbiology, 2001; 91(6), 1110-1117.
  • 51. Cotillard, A., Kennedy, S., Kong, L., Prifti, E., Pons, N., Le Chatelier, et al. Dietary inter ve ntion impact on gut microbial gene richness. Nature, 2013;500(7464), 585-588.
  • 52. Zhu, Y., Li, H., Xu, X., Li, C. and Zhou, G. The gut microbiota in young and middle-aged rats showed different responses to chicken protein in their diet. BMC Microbiology, 2016;16(1), 281.
  • 53. Sprong, R., Schonewille, A. and van der Meer, R. Dietary cheese whey protein protects rats against mild dextran sulfate sodium–induced colitis: role of mucin and microbiota. Journal of Dairy Science, 2010; 93(4), 1364-1371.
  • 54. Huang, H., Krishnan, H., Pham, Q., Yu, L. and Wang, T. Soy and gut microbiota: interaction and implication for human health. Journal of Agricultural and Food Chemistry, 2016; 64(46), 8695-8709.
  • 55. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J., Druart, C., Bindels, L., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences, 2013;110(22), 9066-9071.
  • 56. Yu, H., Guo, Z., Shen, S. and Shan, W. Effects of taurine on gut microbiota and metabolism in mice. Amino Acids, 2016; 48(7), 1601-1617.
  • 57. Singh, R., Chang, H., Yan, D., Lee, K., Ucmak, D., Wong, K., et al. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017;15(1), 73.
  • 58. Ou, J., Carbonero, F., Zoetendal, E., DeLany, J., Wang, M., Newton, K., Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. The American Journal of Clinical Nutrition, 2013; 98(1), 111-120.
  • 59. Ramírez-Pérez, O., Cruz-Ramón, V., Chinchilla-López, P., Méndez-Sánchez, N. The role of the gut microbiota in bile acid metabolism. Annals of Hepatology, 2017;16(0), 15-20.
  • 60. Russell, W., Gratz, S., Duncan, S., Holtrop, G., Ince, J., Scobbie, L., et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. The American Journal of Clinical Nutrition, 2011; 93(5), 1062-1072.
  • 61. Zhang LS, Davies SS: Microbial metabolism of dietary components to bioactive metabolites: Opportunities for new therapeutic interventions. Genome Med 2016;8:46.
  • 62. Anitha Nallu, Shailendra Sharma, Ali Ramezani, Jagadeesan Muralidharan, and Dominic Raj. Gut Microbiome in CKD. HHS Public Access. 2018;179: 24–37.
  • 63. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al.Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57-63
  • 64. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576-585
  • 65. McCarty MF: L-carnitine consumption, its metabolism by intestinal microbiota, and cardiovascular health. Mayo Clin Proc 2013;88:786-789
  • 66. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015;116:448-455
  • 67. Bae S, Ulrich CM, Neuhouser ML, Malysheva O, Bailey LB, Xiao L, et al. Plasma choline metabolites and colorectal cancer risk in the Women’s Health Initiative Observational Study. Cancer Res 2014;74:7442-7452
  • 68. Fava, F., Gitau, R., Griffin, B., Gibson, G., Tuohy, K., Lovegrove , J. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. International Journal of Obesity, 2012;37(2), 216-223.
  • 69. Ramírez-Pérez, O., Cruz-Ramón, V., Chinchilla-López, P., Méndez-Sánchez, N. The role of the gut microbiota in bile acid metabolism. Annals of Hepatology, 2017; 16(0), 15-20.
  • 70. David, L., Maurice, C., Carmody, R., Gootenberg, D., Button, J., Wolfe, B., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2013;505(7484), 559-563.
  • 71. Druart, C., Bindels, L., Schmaltz, R., Neyrinck, A., Cani, P., Walter, J., et al.Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: proof of concept in germ-free versus conventionalized mice. Molecular Nutrition & Food Research, 2015;59(8), 1603-1613.
  • 72. Robertson, R., Seira Oriach, C., Murphy, K., Moloney, G., Cryan, J., Dinan, T., et al.Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain, Behavior, and Immunity, 2017; 59, 21-37.
  • 73. Lam, Y., Ha, C., Hoffmann, J., Oscarsson, J., Dinudom, A., Mather, T., et al. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity, 2015; 23(7), 1429-1439.
  • 74. Hulin, S., Singh, S., Chapman, M., Allan, A., Langman, M., Eggo, M. Sulphide-induced energy deficiency in colonic cells is prevented by glucose but not by butyrate. Alimentary Pharmacology and Therapeutics, 2002;16(2), 325-331.
  • 75. Jantchou, P., Morois, S., Clavel-Chapelon, F., Boutron-Ruault, M., Carbonnel, F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Gastroenterology, 2010;138(5), 18.
  • 76. Urwin, H., Miles, E., Noakes, P., Kremmyda, L., Vlachava, M., Diaper, N., et al. Effect of salmon consumption during pregnancy on maternal and infant faecal microbiota, secretory IgA and calprotectin. British Journal of Nutrition, 2010;111(05), 773-784.
  • 77. Lecomte, V., Kaakoush, N., Maloney, C., Raipuria, M., Huinao, K., Mitchell, H. et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLOS ONE, 2015;10(5), 126931.
  • 78. Dahiya, D., Renuka, Puniya, M., Shandilya, U., Dhewa, T., Kumar, N., et al. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Frontiers in Microbiology, 2017;8, 563.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Hacer Alataş 0000-0002-6441-0362

Mendane Saka 0000-0002-5516-426X

Yayımlanma Tarihi 24 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 1

Kaynak Göster

APA Alataş, H., & Saka, M. (2021). Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası ve Endotoksemi. Sağlık Bilimleri Ve Yaşam Dergisi, 5(1), 37-46.
AMA Alataş H, Saka M. Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası ve Endotoksemi. SBYD. Aralık 2021;5(1):37-46.
Chicago Alataş, Hacer, ve Mendane Saka. “Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası Ve Endotoksemi”. Sağlık Bilimleri Ve Yaşam Dergisi 5, sy. 1 (Aralık 2021): 37-46.
EndNote Alataş H, Saka M (01 Aralık 2021) Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası ve Endotoksemi. Sağlık Bilimleri ve Yaşam Dergisi 5 1 37–46.
IEEE H. Alataş ve M. Saka, “Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası ve Endotoksemi”, SBYD, c. 5, sy. 1, ss. 37–46, 2021.
ISNAD Alataş, Hacer - Saka, Mendane. “Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası Ve Endotoksemi”. Sağlık Bilimleri ve Yaşam Dergisi 5/1 (Aralık 2021), 37-46.
JAMA Alataş H, Saka M. Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası ve Endotoksemi. SBYD. 2021;5:37–46.
MLA Alataş, Hacer ve Mendane Saka. “Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası Ve Endotoksemi”. Sağlık Bilimleri Ve Yaşam Dergisi, c. 5, sy. 1, 2021, ss. 37-46.
Vancouver Alataş H, Saka M. Kronik Böbrek Yetmezliğinde Bağırsak Mikrobiyotası ve Endotoksemi. SBYD. 2021;5(1):37-46.