Araştırma Makalesi
BibTex RIS Kaynak Göster

PbTe Kuantum Noktalar ve Fotovoltaik Uygulamalarda Bant Enerji Hizalamasının Yapılması

Yıl 2021, Cilt: 16 Sayı: 2, 434 - 443, 25.11.2021
https://doi.org/10.29233/sdufeffd.891908

Öz

Kurşun tellür (PbTe) kuantum noktaları yüksek çoklu eksiton üretim verimine sahip olmaları nedeniyle fotovoltaik uygulama alanları için gelecek vaat eden adaylar olarak değerlendirilseler de görece daha az araştırılmış yüzey kimyaları ve atmosferik ortama olan hassasiyetleri sebebiyle güneş gözesi tasarımlarında sınırlı alaka görmektedirler. Bu çalışma, yüksek kristalli yapıya sahip PbTe kuantum noktalarının sentezini, karakterizasyonunu ve bant hizalama vasıtasıyla solüsyon bazlı güneş gözelerinde kullanımını konu almaktadır. Ultraviyole fotoelektron spektroskopisi çalışmaları, iletim ve değerlik bant seviyelerinin ligant değişimi işleminde kullanılan ligant türüne bağlı olduğunu göstermiştir. Tetrabütilamonyum iyodür (TBAI) ve 1,2-etanditiyol (EDT) ligantlarına tabi tutulmuş PbTe kuantum noktalarının vakuma karşı iletim ve değerlik bant seviyeleri sırasıyla -3,73 eV/-4,83 eV ve -3,48 eV/-4,45 eV olarak belirlenmiştir. TBAI ve EDT ligantlarıyla işlenmiş tabakaların arasında bulunan bant ofseti, güneşi soğuran tabakada bant hizalamasını gerçekleştirebilmemize olanak sağlamıştır. Sonuç olarak, TBAI ve EDT ligantları ile işlem görmüş kuantum noktalarının birlikte kullanıldığı çift katmanlı göze mimarisine sahip güneş gözeleri %0.65 foton değiştirme verimine ulaşmıştır.

Proje Numarası

115F187 and 117E787

Kaynakça

  • [1] E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv., 3, eaao4204, 2017.
  • [2] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics, 7, 933–933, 2013.
  • [3] B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics, 7, 407–412, 2013.
  • [4] J. Xu, O. Voznyy, M. Liu, A. R. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A. H. Proppe, A. Sarkar, F. P. García de Arquer, M. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero-Bermudez, J. Li, J. Fan, L. Quan, P. Todorovic, H. Tan, S. Hoogland, S. O. Kelley, M. Stefik, A. Amassian, and E. H. Sargent, “2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids,” Nat. Nanotechnol., 13, 456–462, 2018.
  • [5] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature, 442, 180–183, 2006.
  • [6] A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids.,” Nat. Nanotechnol., 7, 577–582, 2012.
  • [7] D. Asil, B. J. Walker, B. Ehrler, Y. Vaynzof, A. Sepe, S. Bayliss, A. Sadhanala, P. C. Y. Chow, P. E. Hopkinson, U. Steiner, N. C. Greenham, and R. H. Friend, “Role of PbSe structural stabilization in photovoltaic cells,” Adv. Funct. Mater., 25, 928–935, 2015.
  • [8] T. Hacıefendioğlu, T. K. Solmaz, M. Erkan, and D. Asil, “A comprehensive approach for the instability of PbTe quantum dots and design of a combinatorial passivation strategy,” Sol. Energy Mater. Sol. Cells, 207, 110362, 2020.
  • [9] M. L. Böhm, T. C. Jellicoe, M. Tabachnyk, N. J. L. K. Davis, F. Wisnivesky-Rocca-Rivarola, C. Ducati, B. Ehrler, A. A. Bakulin, and N. C. Greenham, “Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%,” Nano Lett., 15, 7987–7993, 2015.
  • [10] W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of pbse quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc., 134, 20160–20168, 2012.
  • [11] Q. Lin, H. J. Yun, W. Liu, H.-J. Song, N. S. Makarov, O. Isaienko, T. Nakotte, G. Chen, H. Luo, V. I. Klimov, and J. M. Pietryga, “Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films,” J. Am. Chem. Soc., 139, 6644–6653, 2017.
  • [12] H. Zhang, J. Jang, W. Liu, and D. V. Talapin, “Colloidal nanocrystals with ınorganic halide, pseudohalide, and halometallate ligands,” ACS Nano, 8, 7359–7369, 2014.
  • [13] C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering.,” Nat. Mater., 13, 796–801, 2014.
  • [14] J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-Assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc., 128, 3248–3255, 2006.
  • [15] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc., 128, 3241–3247, 2006.
  • [16] W. Lu, J. Fang, K. L. Stokes, and J. Lin, “Shape Evolution and Self Assembly of Monodisperse PbTe Nanocrystals,” J. Am. Chem. Soc., 126, 11798–11799, 2004.
  • [17] L. Yang, M. Tabachnyk, S. L. Bayliss, M. L. Böhm, K. Broch, N. C. Greenham, R. H. Friend, and B. Ehrler, “Solution-Processable Singlet Fission Photovoltaic Devices,” Nano Lett., 15, 354–358, 2015.
  • [18] A. B. Mandale and S. Badrinarayanan, “X-ray photoelectron spectroscopic studies of the semimagnetic semiconductor system Pb1−xMnxTe,” J. Electron Spectros. Relat. Phenomena., 53 (1-2), 87–95, 1990.
  • [19] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, “Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy,” Phys. Rev. B, 28, 1965–1977, 1983.

PbTe Quantum Dots and Engineering of the Energy Band Alignment in Photovoltaic Applications

Yıl 2021, Cilt: 16 Sayı: 2, 434 - 443, 25.11.2021
https://doi.org/10.29233/sdufeffd.891908

Öz

Lead telluride (PbTe) quantum dots, despite being considered as one of the most promising candidates for future photovoltaics owing to their higher multiple exciton generation yields, have received limited attention in solar cell designs due their less explored surface chemistry and high air sensitivity. This study demonstrates the synthesis and characterization of highly crystalline PbTe QDs and their utilization in solution processed solar cells through band alignment engineering. Ultraviolet photoelectron spectroscopy studies showed that the conduction and valence band levels depend strongly on the type of surface ligand utilized for the ligand exchange process. Conduction and valence band levels of tetrabutylammonium iodide (TBAI) and 1,2-ethanedithiol (EDT) treated PbTe QDs with respect to vacuum were measured as -3.73 eV/-4.83 eV and -3.48 eV/-4.45 eV, respectively. The presence of a band offset between the conduction and valence band levels of TBAI and EDT treated layers allowed us to engineer the band alignment in the light absorbing layer. As a result, solar cells where TBAI and EDT ligand treated QDs were utilized in a bilayer cell architecture reached a photo conversion efficiency of 0.65%.

Destekleyen Kurum

The Scientific and Technological Research Council of Turkey (TÜBİTAK)

Proje Numarası

115F187 and 117E787

Kaynakça

  • [1] E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, and J. M. Luther, “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” Sci. Adv., 3, eaao4204, 2017.
  • [2] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photonics, 7, 933–933, 2013.
  • [3] B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, “High-efficiency quantum-dot light-emitting devices with enhanced charge injection,” Nat. Photonics, 7, 407–412, 2013.
  • [4] J. Xu, O. Voznyy, M. Liu, A. R. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A. H. Proppe, A. Sarkar, F. P. García de Arquer, M. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero-Bermudez, J. Li, J. Fan, L. Quan, P. Todorovic, H. Tan, S. Hoogland, S. O. Kelley, M. Stefik, A. Amassian, and E. H. Sargent, “2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids,” Nat. Nanotechnol., 13, 456–462, 2018.
  • [5] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors,” Nature, 442, 180–183, 2006.
  • [6] A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids.,” Nat. Nanotechnol., 7, 577–582, 2012.
  • [7] D. Asil, B. J. Walker, B. Ehrler, Y. Vaynzof, A. Sepe, S. Bayliss, A. Sadhanala, P. C. Y. Chow, P. E. Hopkinson, U. Steiner, N. C. Greenham, and R. H. Friend, “Role of PbSe structural stabilization in photovoltaic cells,” Adv. Funct. Mater., 25, 928–935, 2015.
  • [8] T. Hacıefendioğlu, T. K. Solmaz, M. Erkan, and D. Asil, “A comprehensive approach for the instability of PbTe quantum dots and design of a combinatorial passivation strategy,” Sol. Energy Mater. Sol. Cells, 207, 110362, 2020.
  • [9] M. L. Böhm, T. C. Jellicoe, M. Tabachnyk, N. J. L. K. Davis, F. Wisnivesky-Rocca-Rivarola, C. Ducati, B. Ehrler, A. A. Bakulin, and N. C. Greenham, “Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%,” Nano Lett., 15, 7987–7993, 2015.
  • [10] W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, “Highly effective surface passivation of pbse quantum dots through reaction with molecular chlorine,” J. Am. Chem. Soc., 134, 20160–20168, 2012.
  • [11] Q. Lin, H. J. Yun, W. Liu, H.-J. Song, N. S. Makarov, O. Isaienko, T. Nakotte, G. Chen, H. Luo, V. I. Klimov, and J. M. Pietryga, “Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films,” J. Am. Chem. Soc., 139, 6644–6653, 2017.
  • [12] H. Zhang, J. Jang, W. Liu, and D. V. Talapin, “Colloidal nanocrystals with ınorganic halide, pseudohalide, and halometallate ligands,” ACS Nano, 8, 7359–7369, 2014.
  • [13] C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering.,” Nat. Mater., 13, 796–801, 2014.
  • [14] J. J. Urban, D. V. Talapin, E. V. Shevchenko, and C. B. Murray, “Self-Assembly of PbTe quantum dots into nanocrystal superlattices and glassy films,” J. Am. Chem. Soc., 128, 3248–3255, 2006.
  • [15] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. Yu, O. I. Mićić, R. J. Ellingson, and A. J. Nozik, “PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation,” J. Am. Chem. Soc., 128, 3241–3247, 2006.
  • [16] W. Lu, J. Fang, K. L. Stokes, and J. Lin, “Shape Evolution and Self Assembly of Monodisperse PbTe Nanocrystals,” J. Am. Chem. Soc., 126, 11798–11799, 2004.
  • [17] L. Yang, M. Tabachnyk, S. L. Bayliss, M. L. Böhm, K. Broch, N. C. Greenham, R. H. Friend, and B. Ehrler, “Solution-Processable Singlet Fission Photovoltaic Devices,” Nano Lett., 15, 354–358, 2015.
  • [18] A. B. Mandale and S. Badrinarayanan, “X-ray photoelectron spectroscopic studies of the semimagnetic semiconductor system Pb1−xMnxTe,” J. Electron Spectros. Relat. Phenomena., 53 (1-2), 87–95, 1990.
  • [19] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, “Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy,” Phys. Rev. B, 28, 1965–1977, 1983.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makaleler
Yazarlar

Tuğba Hacıefendioğlu Bu kişi benim 0000-0001-5231-5416

Demet Asil 0000-0001-6368-7151

Proje Numarası 115F187 and 117E787
Yayımlanma Tarihi 25 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 16 Sayı: 2

Kaynak Göster

IEEE T. Hacıefendioğlu ve D. Asil, “PbTe Quantum Dots and Engineering of the Energy Band Alignment in Photovoltaic Applications”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 16, sy. 2, ss. 434–443, 2021, doi: 10.29233/sdufeffd.891908.