Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Water-based Isocyanate-Free Poly (Hydroxy Urethane) Films and Investigation of Their Self-Healing Properties

Yıl 2024, , 1 - 11, 27.04.2024
https://doi.org/10.19113/sdufenbed.1195161

Öz

This research aimed to develop water-soluble isocyanate-free
poly(hydroxyl urethane) (PHU)s with phosgene-free, low-in-volatile organic
compounds (VOCs) emission and analyze their self-healing properties. Disulfide
bonds were introduced into the polymer backbone of PHUs to constitute the self
healing capability. With a solid content of 30%, WSPHU dispersion was prepared
without co-solvent. To form the network structure of WSPHUs, different ratios of
hexakis methoxymethyl melamine (HMMM) were used. Transparent and thermally
stable WSPHUs were developed by using different ratios of HMMM (2-8% by weight).
The films were damaged with 180 grit sandpaper and kept at 80 oC in an oven. By
using an optical microscope, it was observed that damaged films repaired themselves
to varying degrees. According to the experimental results, HMMM ratio and extent of
the damage (scratch thickness) significantly impact the self-healing abilities of the
WSPHUs. This is a pioneering study in identifying the development of self-healing
isocyanate-free WSPHUs for the future.

Proje Numarası

2018/AP/0008

Kaynakça

  • Bizet, B., Grau, E., Cramail, H., Asua, J.M. 2020. Water-Based Non-Isocyanate Polyurethane-Ureas. ACS Appl. Polym. Mater., 2, 4016–4025, doi:10.1021/acsapm.0c00657.
  • Lee, D. Il, Kim, S.H., Lee, D.S. 2019. Synthesis and Characterization of Healable Waterborne Polyurethanes with Cystamine Chain Extenders. Molecules, 24, 1–18, doi:10.3390/molecules24081492.
  • Maisonneuve, L., Lamarzelle, O., Rix, E., Grau, E., Cramail, H. 2015. Isocyanate-Free Routes to Polyurethanes and Poly(Hydroxy Urethane)S. Chem. Rev., 115, 12407–12439, doi:10.1021/acs.chemrev.5b00355.
  • Ousaka, N., Endo, T. 2021. One-Pot Nonisocyanate Synthesis of Sequence-Controlled Poly(Hydroxy Urethane)s from a Bis(Six-Membered Cyclic Carbonate) and Two Different Diamines. Macromolecules, 54, 2059–2067. doi:10.1021/acs.macromol.1c00045.
  • Bizet, B., Grau, E., Cramail, H., Asua, J.M. 2020. Volatile Organic Compound-Free Synthesis of Waterborne Poly(Hydroxy Urethane)-(Meth)Acrylic Hybrids by Miniemulsion Polymerization. ACS Appl. Polym. Mater., 2, 4016–4025, doi:10.1021/acsapm.0c00657.
  • Lu, Y., Larock, R.C. 2007. New Hybrid Latexes from a Soybean Oil-Based Waterborne Polyurethane and Acrylics via Emulsion Polymerization. Biomacromolecules, 8, 3108–3114, doi:10.1021/bm700522z.
  • Noble, K.L. 1997.Waterborne Polyurethanes. Prog. Org. Coatings, 32, 131–136, doi:10.1016/S0300-9440(97)00071-4.
  • Pérez-Limiñana, M.A., Arán-Aís, F., Torró-Palau, A.M., Orgilés-Barceló, A.C., Martín-Martínez, J.M. 2005. Characterization of Waterborne Polyurethane Adhesives Containing Different Amounts of Ionic Groups. Int. J. Adhes. Adhes., 25, 507–517, doi:10.1016/j.ijadhadh.2005.02.002.
  • Lee, D., Kim, S., Lee, D. 2019. Synthesis and characterization of healable waterborne polyurethanes with cystamine chain extenders. Molecules, 24(8), 1492.
  • Wan, T., Chen, D. 2017. Synthesis and Properties of Self-Healing Waterborne Polyurethanes Containing Disulfide Bonds in the Main Chain. J. Mater. Sci., 52, 197–207, doi:10.1007/s10853-016-0321-x.
  • Subramani, S., Lee, J.M., Cheong, I.W., Kim, J.H. 2005. Synthesis and Characterization of Water-Borne Crosslinked Silylated Polyurethane Dispersions. J. Appl. Polym. Sci., 98, 620–631, doi:10.1002/app.22071.
  • Chang, K., Jia, H., Gu, S.Y. 2019. A Transparent, Highly Stretchable, Self-Healing Polyurethane Based on Disulfide Bonds. Eur. Polym. J., 112, 822–831, doi:10.1016/j.eurpolymj.2018.11.005.
  • Li, T., Zheng, T., Han, J., Liu, Z., Guo, Z.X., Zhuang, Z., Xu, J., Guo, B.H. 2019. Effects of Diisocyanate Structure and Disulfide Chain Extender on Hard Segmental Packing and Self-Healing Property of Polyurea Elastomers. Polymers, 11, 1–18, doi:10.3390/polym11050838.
  • Liu, Q., Liu, Y., Zheng, H., Li, C., Zhang, Y., Zhang, Q. 2020. Design and Development of Self-Repairable and Recyclable Crosslinked Poly(Thiourethane-Urethane) via Enhanced Aliphatic Disulfide Chemistry. J. Polym. Sci., 58, 1092–1104, doi:10.1002/pol.20190186.
  • Zhang, J., Zhang, C., Song, F., Shang, Q., Hu, Y., Jia, P., Liu, C., Hu, L., Zhu, G., Huang, J. 2022. Castor-Oil-Based, Robust, Self-Healing, Shape Memory, and Reprocessable Polymers Enabled by Dynamic Hindered Urea Bonds and Hydrogen Bonds. Chem. Eng. J., 429, 131848, doi:10.1016/j.cej.2021.131848.
  • Ma, J., Porath, L.E., Haque, M.F., Sett, S., Rabbi, K.F., Nam, S.W., Miljkovic, N., Evans, C.M. 2021. Ultra-Thin Self-Healing Vitrimer Coatings for Durable Hydrophobicity. Nat. Commun., 12, 1–10, doi:10.1038/s41467-021-25508-4.
  • Bingjie, Z., Lei, L., Jiawei, H., Hu, H., Honggang, M., Sixun, Z. 2022. Real Self-Healable and Reprocessable Networks Involving Diblock Copolymer and Hindered Urea Bonds. Polymer (Guildf). 124591.
  • Gadwal, I. 2020. A Brief Overview on Preparation of Self-Healing Polymers and Coatings via Hydrogen Bonding Interactions. Macromol 1, 18–36, doi:10.3390/macromol1010003.
  • Wang, L., Wang, X., Zhang, H., Yang, B., Wang, L., Sun, H. 2020. A Colorless, Transparent and Self-Healing Polyurethane Elastomer Modulated by Dynamic Disulfide and Hydrogen Bonds. New J. Chem. 44, 5746–5754, doi:10.1039/c9nj06457e.
  • Wu, P., Cheng, H., Wang, X., Shi, R., Zhang, C., Arai, M., Zhao, F. 2021. A Self-Healing and Recyclable Polyurethane-Urea Diels-Alder Adduct Synthesized from Carbon Dioxide and Furfuryl Amine. Green Chem. 23, 552–560, doi:10.1039/d0gc03695a.
  • Kamada, J., Koynov, K., Corten, C., Juhari, A., Yoon, J., Urban, M., Balazs, AC, Matyjaszewski, K. 2010. Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules, 43, 4133–4139.
  • Xu, Y., Chen, D. 2016. A Novel Self-Healing Polyurethane Based on Disulfide Bonds. Macromol. Chem. Phys., 217, 1191–1196, doi:10.1002/macp.201600011.
  • Yang, Y., Lu, X., Wang, W. 2017. A Tough Polyurethane Elastomer with Self-Healing Ability. Mater. Des., 127, 30–36, doi:10.1016/j.matdes.2017.04.015.
  • Gao, W., Bie, M., Quan, Y., Zhu, J., Zhang, W. 2018. Self-Healing, Reprocessing and Sealing Abilities of Polysulfide-Based Polyurethane. Polymer (Guildf). 151, 27–33, doi:10.1016/j.polymer.2018.07.047.
  • Mazurek-Budzyńska, M.M., Rokicki, G., Drzewicz, M., Guńka, P.A., Zachara, J. 2016. Bis(Cyclic Carbonate) Based on D-Mannitol, D-Sorbitol and Di(Trimethylolpropane) in the Synthesis of Non-Isocyanate Poly(Carbonate-Urethane)S. Eur. Polym. J., 84, 799–811, doi:10.1016/j.eurpolymj.2016.04.021.
  • Matsukizono, H., Endo, T. 2016. Synthesis and Hydrolytic Properties of Water-Soluble Poly(Carbonate-Hydroxyurethane)s from Trimethylolpropane. Polym. Chem., 7, 958–969, doi:10.1039/c5py01733e.
  • Tramontano, V., Blank, W. 1995. Cross-Linking of Waterborne Polyurethane Dispersions. J. Coatings Technol., 67, 89–99.
  • Zhao, H., Hao, T.H., Hu, G.H., Shi, D., Huang, D., Jiang, T., Zhang, Q.C. 2017. Preparation and Characterization of Polyurethanes with Cross-Linked Siloxane in the Side Chain by Sol-Gel Reactions. Materials, 10, 1–15, doi:10.3390/ma10030247.
  • Lollivier, G., Gressier, M., Ansart, F., Aufray, M., Menu, M.J. 2021. Influence of Hybrid Sol-Gel Crosslinker on Self-Healing Properties for Multifunctional Coatings. Materials, 14, doi:10.3390/ma14185382.

İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi ve Kendini Onarma Özelliklerinin İncelenmesi

Yıl 2024, , 1 - 11, 27.04.2024
https://doi.org/10.19113/sdufenbed.1195161

Öz

Bu araştırmada, fosgensiz ve düşük uçucu organik bileşik (UOB), (volatile organic
compunds, VOCs) emisyonuna sahip izosiyanat içermeyen su esaslı poli(hidroksil
üretan) (WPHU) filmlerin hazırlanması ve kendi kendini onarma özelliklerinin
incelenmesi hedeflenmiştir. WSPHU'ların kendi kendini onarma yeteneği polimer ana
zincirine disülfür bağları eklenmesiyle sağlanmıştır. %30 katı içeriğe sahip WSPHU
dispersiyonu herhangi bir yardımcı çözücü olmadan sadece su ile hazırlanmıştır.
WSPHU'ların ağ yapısını oluşturmak için hexakis metoksimetil melamin (HMMM)
kullanılmıştır. Şeffaf görünümde ve ısıl olarak kararlı WSPHU filmler farklı oranlarda
HMMM (ağırlıkça %2-8) kullanılarak hazırlanmıştır. 180 numara zımpara ile
hasarlanan filmler etüvde 24 saat 80 oC'de bekletildikten sonra kendi kendini onarma
özellikleri incelenmiştir. Optik mikroskopla yapılan gözlemler neticesinde hasarlı
filmlerin kendi kendilerini farklı derecelerde onardığı görülmüştür. Deney
sonuçlarına göre HMMM oranı ve hasarın büyüklüğü (çizik kalınlığı), WSPHU'ların
kendi kendini onarma yetenekleri üzerinde önemli bir etkiye sahiptir. Filmdeki
HMMM oranı %4’te çizik kalınlıkları da dikkate alındığında kendi kendini onarma
performansı en iyidir. Mevcut çalışma, kendi kendini onaran izosiyanat içermeyen
WSPHU'ların geliştirilmesi için öncü bir çalışma niteliğindedir.

Destekleyen Kurum

Yalova Üniversitesi Bilimsel Araştırma Projeleri Birimleri

Proje Numarası

2018/AP/0008

Teşekkür

Bu çalışma Yalova Üniversitesi Bilimsel Araştırma Projeleri Birimleri tarafından desteklenmiştir (Proje No: 2018/AP/0008).

Kaynakça

  • Bizet, B., Grau, E., Cramail, H., Asua, J.M. 2020. Water-Based Non-Isocyanate Polyurethane-Ureas. ACS Appl. Polym. Mater., 2, 4016–4025, doi:10.1021/acsapm.0c00657.
  • Lee, D. Il, Kim, S.H., Lee, D.S. 2019. Synthesis and Characterization of Healable Waterborne Polyurethanes with Cystamine Chain Extenders. Molecules, 24, 1–18, doi:10.3390/molecules24081492.
  • Maisonneuve, L., Lamarzelle, O., Rix, E., Grau, E., Cramail, H. 2015. Isocyanate-Free Routes to Polyurethanes and Poly(Hydroxy Urethane)S. Chem. Rev., 115, 12407–12439, doi:10.1021/acs.chemrev.5b00355.
  • Ousaka, N., Endo, T. 2021. One-Pot Nonisocyanate Synthesis of Sequence-Controlled Poly(Hydroxy Urethane)s from a Bis(Six-Membered Cyclic Carbonate) and Two Different Diamines. Macromolecules, 54, 2059–2067. doi:10.1021/acs.macromol.1c00045.
  • Bizet, B., Grau, E., Cramail, H., Asua, J.M. 2020. Volatile Organic Compound-Free Synthesis of Waterborne Poly(Hydroxy Urethane)-(Meth)Acrylic Hybrids by Miniemulsion Polymerization. ACS Appl. Polym. Mater., 2, 4016–4025, doi:10.1021/acsapm.0c00657.
  • Lu, Y., Larock, R.C. 2007. New Hybrid Latexes from a Soybean Oil-Based Waterborne Polyurethane and Acrylics via Emulsion Polymerization. Biomacromolecules, 8, 3108–3114, doi:10.1021/bm700522z.
  • Noble, K.L. 1997.Waterborne Polyurethanes. Prog. Org. Coatings, 32, 131–136, doi:10.1016/S0300-9440(97)00071-4.
  • Pérez-Limiñana, M.A., Arán-Aís, F., Torró-Palau, A.M., Orgilés-Barceló, A.C., Martín-Martínez, J.M. 2005. Characterization of Waterborne Polyurethane Adhesives Containing Different Amounts of Ionic Groups. Int. J. Adhes. Adhes., 25, 507–517, doi:10.1016/j.ijadhadh.2005.02.002.
  • Lee, D., Kim, S., Lee, D. 2019. Synthesis and characterization of healable waterborne polyurethanes with cystamine chain extenders. Molecules, 24(8), 1492.
  • Wan, T., Chen, D. 2017. Synthesis and Properties of Self-Healing Waterborne Polyurethanes Containing Disulfide Bonds in the Main Chain. J. Mater. Sci., 52, 197–207, doi:10.1007/s10853-016-0321-x.
  • Subramani, S., Lee, J.M., Cheong, I.W., Kim, J.H. 2005. Synthesis and Characterization of Water-Borne Crosslinked Silylated Polyurethane Dispersions. J. Appl. Polym. Sci., 98, 620–631, doi:10.1002/app.22071.
  • Chang, K., Jia, H., Gu, S.Y. 2019. A Transparent, Highly Stretchable, Self-Healing Polyurethane Based on Disulfide Bonds. Eur. Polym. J., 112, 822–831, doi:10.1016/j.eurpolymj.2018.11.005.
  • Li, T., Zheng, T., Han, J., Liu, Z., Guo, Z.X., Zhuang, Z., Xu, J., Guo, B.H. 2019. Effects of Diisocyanate Structure and Disulfide Chain Extender on Hard Segmental Packing and Self-Healing Property of Polyurea Elastomers. Polymers, 11, 1–18, doi:10.3390/polym11050838.
  • Liu, Q., Liu, Y., Zheng, H., Li, C., Zhang, Y., Zhang, Q. 2020. Design and Development of Self-Repairable and Recyclable Crosslinked Poly(Thiourethane-Urethane) via Enhanced Aliphatic Disulfide Chemistry. J. Polym. Sci., 58, 1092–1104, doi:10.1002/pol.20190186.
  • Zhang, J., Zhang, C., Song, F., Shang, Q., Hu, Y., Jia, P., Liu, C., Hu, L., Zhu, G., Huang, J. 2022. Castor-Oil-Based, Robust, Self-Healing, Shape Memory, and Reprocessable Polymers Enabled by Dynamic Hindered Urea Bonds and Hydrogen Bonds. Chem. Eng. J., 429, 131848, doi:10.1016/j.cej.2021.131848.
  • Ma, J., Porath, L.E., Haque, M.F., Sett, S., Rabbi, K.F., Nam, S.W., Miljkovic, N., Evans, C.M. 2021. Ultra-Thin Self-Healing Vitrimer Coatings for Durable Hydrophobicity. Nat. Commun., 12, 1–10, doi:10.1038/s41467-021-25508-4.
  • Bingjie, Z., Lei, L., Jiawei, H., Hu, H., Honggang, M., Sixun, Z. 2022. Real Self-Healable and Reprocessable Networks Involving Diblock Copolymer and Hindered Urea Bonds. Polymer (Guildf). 124591.
  • Gadwal, I. 2020. A Brief Overview on Preparation of Self-Healing Polymers and Coatings via Hydrogen Bonding Interactions. Macromol 1, 18–36, doi:10.3390/macromol1010003.
  • Wang, L., Wang, X., Zhang, H., Yang, B., Wang, L., Sun, H. 2020. A Colorless, Transparent and Self-Healing Polyurethane Elastomer Modulated by Dynamic Disulfide and Hydrogen Bonds. New J. Chem. 44, 5746–5754, doi:10.1039/c9nj06457e.
  • Wu, P., Cheng, H., Wang, X., Shi, R., Zhang, C., Arai, M., Zhao, F. 2021. A Self-Healing and Recyclable Polyurethane-Urea Diels-Alder Adduct Synthesized from Carbon Dioxide and Furfuryl Amine. Green Chem. 23, 552–560, doi:10.1039/d0gc03695a.
  • Kamada, J., Koynov, K., Corten, C., Juhari, A., Yoon, J., Urban, M., Balazs, AC, Matyjaszewski, K. 2010. Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules, 43, 4133–4139.
  • Xu, Y., Chen, D. 2016. A Novel Self-Healing Polyurethane Based on Disulfide Bonds. Macromol. Chem. Phys., 217, 1191–1196, doi:10.1002/macp.201600011.
  • Yang, Y., Lu, X., Wang, W. 2017. A Tough Polyurethane Elastomer with Self-Healing Ability. Mater. Des., 127, 30–36, doi:10.1016/j.matdes.2017.04.015.
  • Gao, W., Bie, M., Quan, Y., Zhu, J., Zhang, W. 2018. Self-Healing, Reprocessing and Sealing Abilities of Polysulfide-Based Polyurethane. Polymer (Guildf). 151, 27–33, doi:10.1016/j.polymer.2018.07.047.
  • Mazurek-Budzyńska, M.M., Rokicki, G., Drzewicz, M., Guńka, P.A., Zachara, J. 2016. Bis(Cyclic Carbonate) Based on D-Mannitol, D-Sorbitol and Di(Trimethylolpropane) in the Synthesis of Non-Isocyanate Poly(Carbonate-Urethane)S. Eur. Polym. J., 84, 799–811, doi:10.1016/j.eurpolymj.2016.04.021.
  • Matsukizono, H., Endo, T. 2016. Synthesis and Hydrolytic Properties of Water-Soluble Poly(Carbonate-Hydroxyurethane)s from Trimethylolpropane. Polym. Chem., 7, 958–969, doi:10.1039/c5py01733e.
  • Tramontano, V., Blank, W. 1995. Cross-Linking of Waterborne Polyurethane Dispersions. J. Coatings Technol., 67, 89–99.
  • Zhao, H., Hao, T.H., Hu, G.H., Shi, D., Huang, D., Jiang, T., Zhang, Q.C. 2017. Preparation and Characterization of Polyurethanes with Cross-Linked Siloxane in the Side Chain by Sol-Gel Reactions. Materials, 10, 1–15, doi:10.3390/ma10030247.
  • Lollivier, G., Gressier, M., Ansart, F., Aufray, M., Menu, M.J. 2021. Influence of Hybrid Sol-Gel Crosslinker on Self-Healing Properties for Multifunctional Coatings. Materials, 14, doi:10.3390/ma14185382.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Dilek Dalgakıran 0000-0001-7292-8666

Proje Numarası 2018/AP/0008
Yayımlanma Tarihi 27 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Dalgakıran, D. (2024). İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi ve Kendini Onarma Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 1-11. https://doi.org/10.19113/sdufenbed.1195161
AMA Dalgakıran D. İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi ve Kendini Onarma Özelliklerinin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2024;28(1):1-11. doi:10.19113/sdufenbed.1195161
Chicago Dalgakıran, Dilek. “İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi Ve Kendini Onarma Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 1 (Nisan 2024): 1-11. https://doi.org/10.19113/sdufenbed.1195161.
EndNote Dalgakıran D (01 Nisan 2024) İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi ve Kendini Onarma Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 1 1–11.
IEEE D. Dalgakıran, “İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi ve Kendini Onarma Özelliklerinin İncelenmesi”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 28, sy. 1, ss. 1–11, 2024, doi: 10.19113/sdufenbed.1195161.
ISNAD Dalgakıran, Dilek. “İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi Ve Kendini Onarma Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/1 (Nisan 2024), 1-11. https://doi.org/10.19113/sdufenbed.1195161.
JAMA Dalgakıran D. İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi ve Kendini Onarma Özelliklerinin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:1–11.
MLA Dalgakıran, Dilek. “İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi Ve Kendini Onarma Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 1, 2024, ss. 1-11, doi:10.19113/sdufenbed.1195161.
Vancouver Dalgakıran D. İzosiyanat İçermeyen Su Esaslı Poli (Hidroksi Üretan) Filmlerin Sentezi ve Kendini Onarma Özelliklerinin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(1):1-11.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.