Araştırma Makalesi
BibTex RIS Kaynak Göster

Craterellus cornucopioides Biyosorbanı ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik Çalışmalar

Yıl 2024, , 325 - 334, 23.12.2024
https://doi.org/10.19113/sdufenbed.1454469

Öz

Bu çalışmada yenilebilir bir mantar türü olan Craterellus cornucopioides biyokütlesinin sulu çözeltilerden Kongo kırmızısının biyosorpsiyonunda biyosorbent olarak kullanımı araştırılmıştır. Biyosorbentin karakterizasyonu gerçekleştirildikten sonra biyosorpsiyon koşulları optimize edilmiştir. Elde edilen verilere göre 0,01 g biyosorbent miktarı kullanılarak pH: 6,0’da 25 ⁰C ortam sıcaklığında 2 saatlik biyosorpsiyonun ardından biyosorpsiyon kapasitesi (qe) 150 mg/L başlangıç Kongo kırmızısı derişimi için 46,22±2,14 mg/g olarak bulunmuştur. Biyosorpsiyonun doğasının aydınlatılabilmesi için biyosorpsiyon izotermleri, biyosorpsiyon kinetiği ve termodinamiği araştırılmıştır. Elde edilen deneysel sonuçların kullanılmasıyla hesaplanan fizikokimyasal parametrelere göre, biyosorpsiyon prosesinin Freundlich izoterm modeline ve yalancı-ikinci derece kinetik modele uygun olduğu görülmüştür. Proses ekzotermik karakterde ve kendiliğinden oluşmaktadır. Son olarak biyosorpsiyon-desorpsiyon çalışmaları gerçekleştirilmiş ve kullanılan biyosorbentin etkin bir şekilde tekrar kullanılabileceği gösterilmiştir. Hazırlanan biyosorbentin sulu çözeltilerden boyar madde gideriminde ucuz, verimli ve etkin bir biyosorbent olacağı düşünülmektedir.

Proje Numarası

FHIZ-2023-1503

Teşekkür

Bu çalışma BUÜ BAP FHIZ-2023-1503 no’lu proje tarafından desteklenmiştir. BUÜ BAP Koordinatörlüğü'ne teşekkür ederiz.

Kaynakça

  • [1] Keharia, H., Madamwar, D. 2003. Bioremediation concepts for treatment of dye containing wastewater: A review. Indian Journal of Experimental Biology, 41, 1068-1075.
  • [2] Bekci, Z., Sekia, Y., Cavas, L. 2009. Removal of malachite green by using an invasive marine algae Caulerpa racemosa var. Clyndracea. Journal of Hazardous Materials, 161, 1454-1460.
  • [3] Sun, J. H., Sun, S. P., Wang, G. L., Qiao, L. P. 2007. Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74, 647-652.
  • [4] Daneshvar, E., Kousha, M., Koutahzadeh, N., Sohrabi, M. S., Bhatnagar, A. 2013. Biosorption and bioaccumulation studies of acid orange 7 dye by Ceratophylum demersum. Environmental Progress & Sustainable Energy, 32(2), 285-293.
  • [5] Alver, E., Metin, Ü. 2012. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chemical Engineering Journal, 202, 59–67.
  • [6] Asgher, M. 2012. Biosorption of reactive dyes: A review. Water, Air and Soil Pollution, 223(5), 2417-2435.
  • [7] Corso, C. R., Almeida, E. J. R., Santos, G. C., Morão, L. G., Fabris, G. S. L., Mitter, E. K. 2012. Bioremediation of direct dyes in simulated textile effluents by paramorphogenic form of Aspergillus oryzae. Water Science and Technology, 37, 49-54.
  • [8] Sriharsha, D. V., Kumar, R. L., Savitha, J. 2017. Immobilized fungi on Luffa cylindrica: An effective biosorbent for the removal of lead. Journal of the Taiwan Institute Chemical Engineers, 80, 589-595.
  • [9] Saba, B., Christy, A. D., Jabeen, M. 2016. Kinetic and enzymatic decolorization of industrial dyes utilizing plant-based biosorbents: A review. Environmental Engineering Science, 33(9), 601-614.
  • [10] Souza, F. H. M., Leme, V. F. C., Costa, G. O. B., Castro, K. C., Giraldi, T. R., Andrade, G. S. S. 2020. Biosorption of rhodamine B using a low-cost biosorbent prepared from inactivated Aspergillus oryzae cells: kinetic, equilibrium and thermodynamic studies. Water, Air and Soil Pollution, 231(5), 242.
  • [11] Rizvi, A., Ahmed, B., Zaidi, A., Khan, M.S. 2020. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy, Environmental Monitoring and Assessment, 192, 801.
  • [12] Gu, S., Lan, C.Q. 2024. Mechanism of heavy metal ion biosorption by microalgal cells: A mathematic approach, Journal of Hazardous Materials, 463, 132875.
  • [13] Göçenoğlu Sarıkaya, A., Erden Kopar, E. 2022. Biosorption of Sirius Blue azo-dye by Agaricus campestris biomass: Batch and continuos column studies, Materials Chemistry and Physics, 276, 125381.
  • [14] Göçenoğlu Sarıkaya, A., Osman, B., Tümay Özer, E. 2024. Biosorption of tetracycline antibiotics by Lactarius deliciosus biomass, Chemical Engineering Communications, 211(4), 592-602.
  • [15] Farias, K.C.S., Guimaraes, R.C.A., Oliveira, K.R.W., Nazario, C.E.D., Ferencz, J.A.P., Wender, H. 2023. Banana peel powder biosorbent for removal of hazardous organic pollutants from wastewater, Toxics, 11(8), 664.
  • [16] Ngeno, E., Ongulu, R., Shikuku, V., Ssentongo, D., Otieno, B., Ssebugere, P., Orata, F. 2024. Response surface methodology directed modeling of the biosorption of progesterone onto activated Moringa oleifera seed biomass: Parameters and mechanisms, 360, 142457.
  • [17] Arslan, D.Ş. 2023. Bio-removal of Remazol black 5 dye by Allium scorodoprasum L. biomass; isotherms, kinetic and thermodynamic studies, Erciyes University Journal of Institute of Science and Technology, 39(2), 223-234.
  • [18] Aslıyüce, S., 2023. Screening the heavy metal removal capacity of magnetically modified fungal biosorbent, Chemical Papers, 77, 4331-4344.
  • [19] Karatay, S.E., Aksu, Z., Özeren, İ., Dönmez, G. 2023. Potentiality of newly isolated Aspergillus tubingensis in biosorption of textile dyes: equilibrium and kinetic modeling, Biomass Conversion and Biorefinery, 13, 4777-4784.
  • [20] Şenol, Z.M., Keskin, Z.S., Dinçer, E., Aayed, A.B. 2024. Influential lead uptake using dried and inactivated-fungal biomass obtained from Panaeolus papilionaceus: biological activity, equilibrium, and mechanism, Biomass Conversion and Biorefinery, Doi no: 10,1007/s13399-024-05584-4.
  • [21] Lo, Y. C., Cheng, C. L., Han, Y. L., Chen, B. Y., Chang, J. S. 2014. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation. Bioresource Technology, 160, 182–190.
  • [22] Göçenoğlu Sarıkaya, A. 2021. Biosorption of hexavalent chromium metal ions by Lentinula edodes biomass: Kinetic, Isothermal, and Thermodynamic parameters, Acta Chimica Slovenica, 68(3), 587-593.
  • [23] Al-dahri, T., AbdulRazak, A. A., Rohani, S. 2020. Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: its application as adsorbent for removal of anionic dyes. International Journal of Coal Preparation Utilization, 42(7), 1-14.
  • [24] Wang, L., Wang, A. 2008. Adsorption properties of congo red from aqueous solution onto surfactant-modified montmorillonite. Journal of Hazardous Materials, 160(1), 173-180.
  • [25] Pathania, D., Sharma, A., Siddiqi, Z. M. 2016. Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. Journal of Molecular Liquids, 219, 359-367.
  • [26] Kosanic, M., Rankovic, B., Stanojkovic, T., Radovic-Jakovljevic, M., Ciric, A., Grujicic, D., Milosevic-Djordjevic, O. 2019. Craterellus cornucopioides edible mushroom as source of biologically active compounds. Natural Product Communications, 14(5), 1-6.
  • [27] Liu, Y., Duan, X., Zhang, M., Li, C., Zhang, Z., Hu, B., Liu, A., Li, Q., Chen, H., Tang, Z., Wu, W., Chen, D. 2021. Extraction, structure characterization, carboxymethylation and antioxidant activity of acidic polysaccharides from Craterellus cornucopioides. Industrial Crops and Products, 159, 113079.
  • [28] Astuti, D. W., Mudasir, M., Mada, U. G. 2020. Adsorption of the anionic dye of congo red from aqueous solution using a modified natural zeolite with Benzalkonium. Rasayan Journal of Chemistry, 13(2), 845-853.
  • [29] Sahar, J., Naeem, A., Farooq, M., Zareen, S. 2019. Thermodynamic studies of adsorption of rhodamine B and Congo red on graphene oxide. Desalination and Water Treatment, 164, 228-239.
  • [30] Karaman, C., Karaman, O., Show, P., Karimi-maleh, H., Zare, N. 2022. Chemosphere Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere, 290, Article 133346.
  • [31] Akkaya Sayğılı, G. 2015. Synthesis, characterization and adsorption properties of a novel biomagnetic composite for the removal of Congo red from aqueous medium. Journal of Molecular Liquids, 211, 515-526.
  • [32] Göçenoğlu Sarıkaya, A., Osman, B., Tümay Özer, E. 2023. Lactarius deliciosus biyokütlesi ile sulu çözeltilerden oksitetrasiklin giderimi. Karadeniz Fen Bilimleri Dergisi, 13(3), 1135-1152.
  • [33] Alarifi, I. M., Al-ghamdi, Y. O., Darwesh, R., Omaish, M., Kashif, M. 2021. Properties and application of MoS 2 nanopowder: characterization, Congo red dye adsorption, and optimization. Journal of Materials Research and Technology, 13, 1169-1180.
  • [34] Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361-1403.
  • [35] Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T. 1966. Pore- and solid diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Industrial Engineering and Chemical Fundamentals, 5, 212-223.
  • [36] Freundlich, H. 1906. Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385.
  • [37] Dubinin, M. M., Radushkevich, L. V. 1947. The equation of the characteristic curve of activated charcoal. Proceeding of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  • [38] Tran, H. N., You, S. J., Chao, H. P. 2016. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study, Journal of Environmental Chemical Engineering, 4(3), 2671-2682.
  • [39] Jia, M., Wang, F., Bian, Y., Jin, X., Song, Y., Kengara, F. O., Xi, R., Jiang, X. 2013. Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136, 87-93.
  • [40] Lagergren, S. 1898. Zur therorie der sogenannten adsorption gel oster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar, 25, 1.
  • [41] Ho, Y. S., McKay, G. 1999. Pseudo-second-order model for sorption processes. Process Biochemistry, 34, 451.
  • [42] Alouache, A., Selatnia, A., Sayah, H. E., Moussous, S., Daoud, N. 2021. Biosorption of hexavalent chromium and Congo red dye onto Pleurotus mutilus biomass in aqueous solutions. International Journal of Environmental Science and Technology, 19, 2477-2492.
  • [43] Wang, X. S., Chen, J. P. 2009. Biosorption of Congo red from aqueous solution using wheat bran and rice bran: batch studies. Separation Science and Technology, 44(6), 1452–1466.
  • [44] Dawood, S., Sen, T. K. 2012. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Research, 46(6), 1933–1946.
  • [45] Bouras, H. D., Yeddou, A. R., Bouras, N., Hellel D., Holtz, M. D., Sabaou, N., Chergui, A., Nadjemi, B. 2017. Biosorption of Congo red dye by Aspergillus carbonarius M333 and Penicillium glabrum Pg1: Kinetics, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 80, 915–923.
  • [46] Namabsivayam, C., Muniasamy, N., Gayatri, K., Rani, M., Ranganathan, K. 1996. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57, 37–43.
  • [47] Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., Tonui, M. K. 2020. Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2, 24–31.
  • [48] Zhang, Z., Shan, Y., Wang, J., Ling, H., Zang, S., Gao, W., Zhao, Z., Zhang, H. 2007. Investigation on the rapid adsorption of Congo Red catalyzed by activated carbon powder under microwave irradiation. Journal of Hazardous Materials, 147(1–2), 325–333.
  • [49] Kütük, N. 2022. Congo red biosorption with dried mint leaves; isotherm and kinetic studies. Europen Journal of Science and Technology, 42, 113-117.
  • [50] Gürkan, E. H., Çoruh, S. 2017. Yeni potansiyel biyosorbentlerle Kongo kırmızısının biyosorpsiyon çalışmaları. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 203-212.
  • [51] Rashtbari, Y., Afshin, S., Hamzezadeh, A., Abazari, M. 2020. Application of powdered activated carbon coated with zinc oxide nanoparticles prepared using a green synthesis in removal of Reactive Blue 19 and Reactive Black-5: adsorption isotherm and kinetic models. Desalination and Water Treatment, 179, 354–367.
  • [52] Stjepanovic, M., Velic, N., Galic, A., Kosovic, I., Jakovljevic, T., Habuda-Stanic, M. 2021. From waste to biosorbent: removal of congo red from water by waste wood biomass. Water, 13(3), 279.
  • [53] Oyekanmi, A.A., Ahmad, A., Setapar, S.H.M., Alshammari, M.B., Jawaid, M., Hanafiah, M.M., Khalil, H.P.S.A., Vaseashta, A. 2021. Sustainable Durio zibethinus-derived biosorbents for congo red removal from aqueous solution: statistical optimization, isotherms and mechanism studies. Sustainability, 13(23), 13264.
  • [54] Kitemangu, A., Vegi, M.R., Malima, N.M. 2023. Biosorption of congo red dye from aqueous solution using adsorbent prepared from Vangueria infausta fruit pericarp. Adsorption Science & Technology, 2023, 2023, https://doi.org/10.1155/2023/4319053.
  • [55] Daffalla, S., Taha, A., Da’na, E., El-Aassar, M.R. 2024. Sustainable banana-waste-derived biosorbent for congo red removal from aqueous solutions: kinetics, equilibrium, and breakthrough studies. Water, 16(10), 1449.

Biosorption of Congo Red from Aqueous Solutions by Craterellus cornucopioides Biosorbent: Kinetic, Isothermal and Thermodynamic Studies

Yıl 2024, , 325 - 334, 23.12.2024
https://doi.org/10.19113/sdufenbed.1454469

Öz

In this study, the use of Craterellus cornucopioides biomass, an edible mushroom species, as a biosorbent for the biosorption of Congo red from aqueous solutions was investigated. After characterization of the biosorbent, biosorption conditions were optimized. according to the data obtained, using a biosorbent amount of 0,01 g, at pH: 6.0 at 25 ⁰C ambient temperature after 2 hours of biosorption, the biosorption capacity (qe) was found to be 46.22±2.14 mg/g for an initial Congo red concentration of 150 mg/L. In order to investigate the nature of biosorption, biosorption isotherms, biosorption kinetics and thermodynamic parameters were calculated using the obtained experimental results, the biosorption process was fitted to Freundlich isotherm model and the pseudo-second-order kinetic model. The process is exothermic and occurs spontaneous. Finally, biosorption-desorption studies were carried out and it was shown that the biosorbent can be reused effectively. It is thought that the prepared biosorbent will be cheap, efficient and effective biosorbent for the removal of dyestuff from aqueous solutions.

Proje Numarası

FHIZ-2023-1503

Kaynakça

  • [1] Keharia, H., Madamwar, D. 2003. Bioremediation concepts for treatment of dye containing wastewater: A review. Indian Journal of Experimental Biology, 41, 1068-1075.
  • [2] Bekci, Z., Sekia, Y., Cavas, L. 2009. Removal of malachite green by using an invasive marine algae Caulerpa racemosa var. Clyndracea. Journal of Hazardous Materials, 161, 1454-1460.
  • [3] Sun, J. H., Sun, S. P., Wang, G. L., Qiao, L. P. 2007. Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74, 647-652.
  • [4] Daneshvar, E., Kousha, M., Koutahzadeh, N., Sohrabi, M. S., Bhatnagar, A. 2013. Biosorption and bioaccumulation studies of acid orange 7 dye by Ceratophylum demersum. Environmental Progress & Sustainable Energy, 32(2), 285-293.
  • [5] Alver, E., Metin, Ü. 2012. Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chemical Engineering Journal, 202, 59–67.
  • [6] Asgher, M. 2012. Biosorption of reactive dyes: A review. Water, Air and Soil Pollution, 223(5), 2417-2435.
  • [7] Corso, C. R., Almeida, E. J. R., Santos, G. C., Morão, L. G., Fabris, G. S. L., Mitter, E. K. 2012. Bioremediation of direct dyes in simulated textile effluents by paramorphogenic form of Aspergillus oryzae. Water Science and Technology, 37, 49-54.
  • [8] Sriharsha, D. V., Kumar, R. L., Savitha, J. 2017. Immobilized fungi on Luffa cylindrica: An effective biosorbent for the removal of lead. Journal of the Taiwan Institute Chemical Engineers, 80, 589-595.
  • [9] Saba, B., Christy, A. D., Jabeen, M. 2016. Kinetic and enzymatic decolorization of industrial dyes utilizing plant-based biosorbents: A review. Environmental Engineering Science, 33(9), 601-614.
  • [10] Souza, F. H. M., Leme, V. F. C., Costa, G. O. B., Castro, K. C., Giraldi, T. R., Andrade, G. S. S. 2020. Biosorption of rhodamine B using a low-cost biosorbent prepared from inactivated Aspergillus oryzae cells: kinetic, equilibrium and thermodynamic studies. Water, Air and Soil Pollution, 231(5), 242.
  • [11] Rizvi, A., Ahmed, B., Zaidi, A., Khan, M.S. 2020. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy, Environmental Monitoring and Assessment, 192, 801.
  • [12] Gu, S., Lan, C.Q. 2024. Mechanism of heavy metal ion biosorption by microalgal cells: A mathematic approach, Journal of Hazardous Materials, 463, 132875.
  • [13] Göçenoğlu Sarıkaya, A., Erden Kopar, E. 2022. Biosorption of Sirius Blue azo-dye by Agaricus campestris biomass: Batch and continuos column studies, Materials Chemistry and Physics, 276, 125381.
  • [14] Göçenoğlu Sarıkaya, A., Osman, B., Tümay Özer, E. 2024. Biosorption of tetracycline antibiotics by Lactarius deliciosus biomass, Chemical Engineering Communications, 211(4), 592-602.
  • [15] Farias, K.C.S., Guimaraes, R.C.A., Oliveira, K.R.W., Nazario, C.E.D., Ferencz, J.A.P., Wender, H. 2023. Banana peel powder biosorbent for removal of hazardous organic pollutants from wastewater, Toxics, 11(8), 664.
  • [16] Ngeno, E., Ongulu, R., Shikuku, V., Ssentongo, D., Otieno, B., Ssebugere, P., Orata, F. 2024. Response surface methodology directed modeling of the biosorption of progesterone onto activated Moringa oleifera seed biomass: Parameters and mechanisms, 360, 142457.
  • [17] Arslan, D.Ş. 2023. Bio-removal of Remazol black 5 dye by Allium scorodoprasum L. biomass; isotherms, kinetic and thermodynamic studies, Erciyes University Journal of Institute of Science and Technology, 39(2), 223-234.
  • [18] Aslıyüce, S., 2023. Screening the heavy metal removal capacity of magnetically modified fungal biosorbent, Chemical Papers, 77, 4331-4344.
  • [19] Karatay, S.E., Aksu, Z., Özeren, İ., Dönmez, G. 2023. Potentiality of newly isolated Aspergillus tubingensis in biosorption of textile dyes: equilibrium and kinetic modeling, Biomass Conversion and Biorefinery, 13, 4777-4784.
  • [20] Şenol, Z.M., Keskin, Z.S., Dinçer, E., Aayed, A.B. 2024. Influential lead uptake using dried and inactivated-fungal biomass obtained from Panaeolus papilionaceus: biological activity, equilibrium, and mechanism, Biomass Conversion and Biorefinery, Doi no: 10,1007/s13399-024-05584-4.
  • [21] Lo, Y. C., Cheng, C. L., Han, Y. L., Chen, B. Y., Chang, J. S. 2014. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation. Bioresource Technology, 160, 182–190.
  • [22] Göçenoğlu Sarıkaya, A. 2021. Biosorption of hexavalent chromium metal ions by Lentinula edodes biomass: Kinetic, Isothermal, and Thermodynamic parameters, Acta Chimica Slovenica, 68(3), 587-593.
  • [23] Al-dahri, T., AbdulRazak, A. A., Rohani, S. 2020. Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: its application as adsorbent for removal of anionic dyes. International Journal of Coal Preparation Utilization, 42(7), 1-14.
  • [24] Wang, L., Wang, A. 2008. Adsorption properties of congo red from aqueous solution onto surfactant-modified montmorillonite. Journal of Hazardous Materials, 160(1), 173-180.
  • [25] Pathania, D., Sharma, A., Siddiqi, Z. M. 2016. Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. Journal of Molecular Liquids, 219, 359-367.
  • [26] Kosanic, M., Rankovic, B., Stanojkovic, T., Radovic-Jakovljevic, M., Ciric, A., Grujicic, D., Milosevic-Djordjevic, O. 2019. Craterellus cornucopioides edible mushroom as source of biologically active compounds. Natural Product Communications, 14(5), 1-6.
  • [27] Liu, Y., Duan, X., Zhang, M., Li, C., Zhang, Z., Hu, B., Liu, A., Li, Q., Chen, H., Tang, Z., Wu, W., Chen, D. 2021. Extraction, structure characterization, carboxymethylation and antioxidant activity of acidic polysaccharides from Craterellus cornucopioides. Industrial Crops and Products, 159, 113079.
  • [28] Astuti, D. W., Mudasir, M., Mada, U. G. 2020. Adsorption of the anionic dye of congo red from aqueous solution using a modified natural zeolite with Benzalkonium. Rasayan Journal of Chemistry, 13(2), 845-853.
  • [29] Sahar, J., Naeem, A., Farooq, M., Zareen, S. 2019. Thermodynamic studies of adsorption of rhodamine B and Congo red on graphene oxide. Desalination and Water Treatment, 164, 228-239.
  • [30] Karaman, C., Karaman, O., Show, P., Karimi-maleh, H., Zare, N. 2022. Chemosphere Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere, 290, Article 133346.
  • [31] Akkaya Sayğılı, G. 2015. Synthesis, characterization and adsorption properties of a novel biomagnetic composite for the removal of Congo red from aqueous medium. Journal of Molecular Liquids, 211, 515-526.
  • [32] Göçenoğlu Sarıkaya, A., Osman, B., Tümay Özer, E. 2023. Lactarius deliciosus biyokütlesi ile sulu çözeltilerden oksitetrasiklin giderimi. Karadeniz Fen Bilimleri Dergisi, 13(3), 1135-1152.
  • [33] Alarifi, I. M., Al-ghamdi, Y. O., Darwesh, R., Omaish, M., Kashif, M. 2021. Properties and application of MoS 2 nanopowder: characterization, Congo red dye adsorption, and optimization. Journal of Materials Research and Technology, 13, 1169-1180.
  • [34] Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361-1403.
  • [35] Hall, K. R., Eagleton, L. C., Acrivos, A., Vermeulen, T. 1966. Pore- and solid diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Industrial Engineering and Chemical Fundamentals, 5, 212-223.
  • [36] Freundlich, H. 1906. Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385.
  • [37] Dubinin, M. M., Radushkevich, L. V. 1947. The equation of the characteristic curve of activated charcoal. Proceeding of the Academy of Sciences, Physical Chemistry Section, 55, 331.
  • [38] Tran, H. N., You, S. J., Chao, H. P. 2016. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study, Journal of Environmental Chemical Engineering, 4(3), 2671-2682.
  • [39] Jia, M., Wang, F., Bian, Y., Jin, X., Song, Y., Kengara, F. O., Xi, R., Jiang, X. 2013. Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136, 87-93.
  • [40] Lagergren, S. 1898. Zur therorie der sogenannten adsorption gel oster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar, 25, 1.
  • [41] Ho, Y. S., McKay, G. 1999. Pseudo-second-order model for sorption processes. Process Biochemistry, 34, 451.
  • [42] Alouache, A., Selatnia, A., Sayah, H. E., Moussous, S., Daoud, N. 2021. Biosorption of hexavalent chromium and Congo red dye onto Pleurotus mutilus biomass in aqueous solutions. International Journal of Environmental Science and Technology, 19, 2477-2492.
  • [43] Wang, X. S., Chen, J. P. 2009. Biosorption of Congo red from aqueous solution using wheat bran and rice bran: batch studies. Separation Science and Technology, 44(6), 1452–1466.
  • [44] Dawood, S., Sen, T. K. 2012. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Research, 46(6), 1933–1946.
  • [45] Bouras, H. D., Yeddou, A. R., Bouras, N., Hellel D., Holtz, M. D., Sabaou, N., Chergui, A., Nadjemi, B. 2017. Biosorption of Congo red dye by Aspergillus carbonarius M333 and Penicillium glabrum Pg1: Kinetics, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 80, 915–923.
  • [46] Namabsivayam, C., Muniasamy, N., Gayatri, K., Rani, M., Ranganathan, K. 1996. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57, 37–43.
  • [47] Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., Tonui, M. K. 2020. Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology, 2, 24–31.
  • [48] Zhang, Z., Shan, Y., Wang, J., Ling, H., Zang, S., Gao, W., Zhao, Z., Zhang, H. 2007. Investigation on the rapid adsorption of Congo Red catalyzed by activated carbon powder under microwave irradiation. Journal of Hazardous Materials, 147(1–2), 325–333.
  • [49] Kütük, N. 2022. Congo red biosorption with dried mint leaves; isotherm and kinetic studies. Europen Journal of Science and Technology, 42, 113-117.
  • [50] Gürkan, E. H., Çoruh, S. 2017. Yeni potansiyel biyosorbentlerle Kongo kırmızısının biyosorpsiyon çalışmaları. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 203-212.
  • [51] Rashtbari, Y., Afshin, S., Hamzezadeh, A., Abazari, M. 2020. Application of powdered activated carbon coated with zinc oxide nanoparticles prepared using a green synthesis in removal of Reactive Blue 19 and Reactive Black-5: adsorption isotherm and kinetic models. Desalination and Water Treatment, 179, 354–367.
  • [52] Stjepanovic, M., Velic, N., Galic, A., Kosovic, I., Jakovljevic, T., Habuda-Stanic, M. 2021. From waste to biosorbent: removal of congo red from water by waste wood biomass. Water, 13(3), 279.
  • [53] Oyekanmi, A.A., Ahmad, A., Setapar, S.H.M., Alshammari, M.B., Jawaid, M., Hanafiah, M.M., Khalil, H.P.S.A., Vaseashta, A. 2021. Sustainable Durio zibethinus-derived biosorbents for congo red removal from aqueous solution: statistical optimization, isotherms and mechanism studies. Sustainability, 13(23), 13264.
  • [54] Kitemangu, A., Vegi, M.R., Malima, N.M. 2023. Biosorption of congo red dye from aqueous solution using adsorbent prepared from Vangueria infausta fruit pericarp. Adsorption Science & Technology, 2023, 2023, https://doi.org/10.1155/2023/4319053.
  • [55] Daffalla, S., Taha, A., Da’na, E., El-Aassar, M.R. 2024. Sustainable banana-waste-derived biosorbent for congo red removal from aqueous solutions: kinetics, equilibrium, and breakthrough studies. Water, 16(10), 1449.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Separasyon Bilimi, Analitik Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Şirin Nuray Çakar 0009-0009-2658-8256

Aslı Göçenoğlu Sarıkaya 0000-0002-7161-7003

Bilgen Osman 0000-0001-8406-149X

Proje Numarası FHIZ-2023-1503
Yayımlanma Tarihi 23 Aralık 2024
Gönderilme Tarihi 18 Mart 2024
Kabul Tarihi 22 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Çakar, Ş. N., Göçenoğlu Sarıkaya, A., & Osman, B. (2024). Craterellus cornucopioides Biyosorbanı ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik Çalışmalar. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 325-334. https://doi.org/10.19113/sdufenbed.1454469
AMA Çakar ŞN, Göçenoğlu Sarıkaya A, Osman B. Craterellus cornucopioides Biyosorbanı ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik Çalışmalar. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2024;28(3):325-334. doi:10.19113/sdufenbed.1454469
Chicago Çakar, Şirin Nuray, Aslı Göçenoğlu Sarıkaya, ve Bilgen Osman. “Craterellus Cornucopioides Biyosorbanı Ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal Ve Termodinamik Çalışmalar”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 3 (Aralık 2024): 325-34. https://doi.org/10.19113/sdufenbed.1454469.
EndNote Çakar ŞN, Göçenoğlu Sarıkaya A, Osman B (01 Aralık 2024) Craterellus cornucopioides Biyosorbanı ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik Çalışmalar. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 3 325–334.
IEEE Ş. N. Çakar, A. Göçenoğlu Sarıkaya, ve B. Osman, “Craterellus cornucopioides Biyosorbanı ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik Çalışmalar”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 28, sy. 3, ss. 325–334, 2024, doi: 10.19113/sdufenbed.1454469.
ISNAD Çakar, Şirin Nuray vd. “Craterellus Cornucopioides Biyosorbanı Ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal Ve Termodinamik Çalışmalar”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/3 (Aralık 2024), 325-334. https://doi.org/10.19113/sdufenbed.1454469.
JAMA Çakar ŞN, Göçenoğlu Sarıkaya A, Osman B. Craterellus cornucopioides Biyosorbanı ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik Çalışmalar. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:325–334.
MLA Çakar, Şirin Nuray vd. “Craterellus Cornucopioides Biyosorbanı Ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal Ve Termodinamik Çalışmalar”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 3, 2024, ss. 325-34, doi:10.19113/sdufenbed.1454469.
Vancouver Çakar ŞN, Göçenoğlu Sarıkaya A, Osman B. Craterellus cornucopioides Biyosorbanı ile Sulu Çözeltilerden Kongo Kırmızısı’nın Biyosorpsiyonu: Kinetik, İzotermal ve Termodinamik Çalışmalar. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(3):325-34.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.