EA Şarj İstasyonu için İzolesiz Çift Yönlü DA-DA Dönüştürücü Tasarımı ve Düşük Güçlü Uygulaması
Yıl 2024,
, 197 - 206, 23.08.2024
Furkan Üstünsoy
,
Hasan Hüseyin Sayan
,
Sadık Yıldız
Öz
Günümüzde elektrikli araçların sayısı arttıkça şarjın şebeke üzerindeki olumsuz etkisi büyük bir endişe kaynağı haline geliyor. Bu sorunu çözmek için V2G, V2H ve V2V gibi şarj topolojileri üzerinde çalışılmaktadır. Bu bağlamda en kritik konu uygun altyapı ve ekipmanların tasarlanması ve kullanılmasıdır. Bu çalışmada öncelikle DA şarj istasyonlarına uygun, düşük maliyetli ve yüksek verimli, izolasyonsuz çift yönlü bir DA-DA dönüştürücü tasarlanmıştır. Tasarlanan dönüştürücü hem analitik yöntemlerle hem de düşük güçlerde çalıştırılarak analiz edilmiştir. İkinci olarak, tasarlanan bu dönüştürücüler kullanılarak V2V ve V2H topolojilerinin gerçek dünyada uygulanması gerçekleştirildi. Uygulama çalışmasında bu dönüştürücülerden 4 tanesi şarj ünitesi olarak kullanılarak DA şarj istasyonu modeli oluşturulmuştur. Tasarlanan şarj istasyonunun 90 dakikalık çalışması kural tabanlı bir algoritmaya göre gerçekleştirilmiştir. Buna göre tasarlanan izolasyonsuz çift yönlü DA-DA dönüştürücünün veriminin %95 olduğu gösterilmiştir. Ayrıca, gerçek dünya uygulamasında V2V topolojisi kullanılarak EV yükünün %54.16'sının yoğun olmayan zaman dilimine kaydırılabileceği kanıtlanmıştır. Sonuçlara göre tasarlanan dönüştürücünün izoleli ve yüksek güçlü versiyonunun şarj istasyonları için uygun olduğu anlaşılmıştır.
Etik Beyan
Bu çalışma (BAP Proje Numarası: FDK-2021-7261) Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir.
Destekleyen Kurum
Gazi Üniversitesi Bilimsel Araştırma Projeleri (BAP) Birimi
Proje Numarası
FDK-2021-7261
Kaynakça
- [1] Üstünsoy, F., Sayan, H.H. 2021. Real-time realization of network integration of electric vehicles with a unique balancing strategy. Electrical Engineering, 103, 2647–2660.
- [2] Yildiz, S., Sayan, H.H. 2024. LCL Filter Design and Simulation for Vehicle-To-Grid (V2G) Applications. In: IMSS 2023.
- [3] Mumtaz, F., Yahaya, N. Z., Meraj, S. T., Singh, B., Kannan, R., Ibrahim, O. 2021. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Engineering Journal, 12(4), 3747-3763.
- [4] Sahbani, A., Cherif, K., Saad, K. B. 2020. Multiphase Interleaved Bidirectional DC-DC Converter for Electric Vehicles and Smart Grid Applications. International Journal of Smart Grid-ijSmartGrid, 4(2), 80-87.
- [5] Rezaii, R., Nilian, M., Safayatullah, M., Ghosh, S., & Batarseh, I. 2021. A Bidirectional DC-DC Converter with High Conversion Ratios for the Electrical Vehicle Application. In IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, 1-6.
- [6] Elserougi, A., Abdelsalam, I., Massoud, A., Ahmed, S. 2019. A bidirectional non-isolated hybrid modular DC–DC converter with zero-voltage switching. Electric Power Systems Research, 167, 277-289.
- [7] Hernandez, F. D., Samanbakhsh, R., Mohammadi, P., Ibanez, F. M. 2021. A dual-input high-gain bidirectional DC/DC converter for hybrid energy storage systems in DC grid applications. IEEE Access, 9, 164006-164016.
- [8] Suresh, K., Bharatiraja, C., Chellammal, N., Tariq, M., Chakrabortty, R. K., Ryan, M. J., Alamri, B. 2021. A multifunctional non-isolated dual input-dual output converter for electric vehicle applications. IEEE Access, 9, 64445-64460.
- [9] Al-Obaidi, N. A., Abbas, R. A., & Khazaal, H. F. 2022. A review of non-isolated bidirectional DC-DC converters for hybrid energy storage system. In 2022 5th International Conference on Engineering Technology and its Applications (IICETA), 248-253.
- [10] Pramanik, R., Pati, B. B. 2023. Modelling and control of a non-isolated half-bridge bidirectional DC-DC converter with an energy management topology applicable with EV/HEV. Journal of King Saud University-Engineering Sciences, 35(2), 116-122.
- [11] Varesi, K., Hosseini, S. H., Sabahi, M., Babaei, E., Vosoughi, N. 2017. Performance and design analysis of an improved non‐isolated multiple input buck DC–DC converter. IET Power Electronics, 10(9), 1034-1045.
- [12] Shayeghi, H., Pourjafar, S., Hashemzadeh, S. M. 2021. A switching capacitor based multi‐port bidirectional DC–DC converter. IET Power Electronics, 14(9), 1622-1636.
- [13] Punna, S., Manthati, U. B., Chirayarukil Raveendran, A. 2021. Modeling, analysis, and design of novel control scheme for two‐input bidirectional DC‐DC converter for HESS in DC microgrid applications. International Transactions on Electrical Energy Systems, 31(10), e12774.
- [14] Saadatizadeh, Z., Chavoshipour Heris, P., Sabahi, M., Tarafdar Hagh, M., Maalandish, M. 2018. A new non‐isolated free ripple input current bidirectional DC‐DC converter with capability of zero voltage switching. International Journal of Circuit Theory and Applications, 46(3), 519-542.
- [15] Qi, X., Wang, Y., Wang, Y., Chen, Z. 2021. Optimization of centralized equalization systems based on an integrated cascade bidirectional DC–DC converter. IEEE Transactions on Industrial Electronics, 69(1), 249-259.
- [16] Khan, M. A., Ahmed, A., Husain, I., Sozer, Y., Badawy, M. 2015. Performance analysis of bidirectional DC–DC converters for electric vehicles. IEEE transactions on industry applications, 51(4), 3442-3452.
- [17] De Melo, R. R., Tofoli, F. L., Daher, S., Antunes, F. L. M. 2020. Interleaved bidirectional DC–DC converter for electric vehicle applications based on multiple energy storage devices. Electrical Engineering, 102, 2011-2023.
- [18] Bahravar, S., Abbaszadeh, K., Olamaei, J. 2021. High step-up non-isolated DC–DC converter using diode–capacitor cells. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 81-96.
- [19] Cheng, X. F., Liu, C., Wang, D., Zhang, Y. 2021. State-of-the-art review on soft-switching technologies for non-isolated DC-DC converters. IEEE Access, 9, 119235-119249.
- [20] Dutta, S., Rathore, A., Khadkikar, K. V., Zeineldin, H. 2021. Single-Phase Bridgeless Cuk-Derived DC-DC Converter for Vehicle-to-Vehicle Charge Transfer. IEEE Transportation Electrification Conference (ITEC-India), New Delhi, India, 1-6.
- [21] Artal-Sevil, J. S., Ballestín-Bernad, V., Anzola, J., Domínguez-Navarro, J. A. 2021. High-Gain Non-isolated DC-DC Partial-Power Converter for Automotive Applications. IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 1-6.
- [22] Halder, T. 2023. Modelling and Simulation of a Bi-Directional DC to DC Converter System. 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON), Rajpura, India, 1-6.
- [23] Camara, M.B., Gualous, H., Gustin, F. 2010. DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applicationspolynomial control strategy. IEEE Trans. Ind. Elect. 57 (2), 587–597.
Non-Isolated Bidirectional DC-DC Converter Design And Low Power Application for EV Charging Station
Yıl 2024,
, 197 - 206, 23.08.2024
Furkan Üstünsoy
,
Hasan Hüseyin Sayan
,
Sadık Yıldız
Öz
Today, the negative impact of charging on the grid is becoming a major concern as the number of electric vehicles increases. The charging topologies such as V2G, V2H and V2V are being studied to solve this problem. The most critical issue in this context is the design and use of appropriate infrastructure and equipment. In this study, firstly a low-cost and high-efficiency non-isolated bidirectional DC-DC converter suitable for DC charging stations is designed. The designed converter was analysed both by analytical methods and by operating at low powers. Secondly, a real-world implementation of V2V and V2H topologies has been performed using these designed converters. In the application study, a DC charging station model was created by using 4 of these converters as charging units. The 90-minute operation of the designed charging station was realised according to a rule-based algorithm. Accordingly, it has been shown that the efficiency of the non-isolated bidirectional DC-DC converter designed is 95%. It is also proved that 54.16% of the EVs load can be shifted to off-peak time period using V2V topology in real world application. According to the results, it is understood that the isolated and high-power version of the designed converter is suitable for charging stations.
Etik Beyan
Funding: This study (BAP Project Number: FDK-2021-7261) was supported by Gazi University Scientific Research Projects Unit.
Destekleyen Kurum
Gazi University Scientific Research Projects Unit
Proje Numarası
FDK-2021-7261
Kaynakça
- [1] Üstünsoy, F., Sayan, H.H. 2021. Real-time realization of network integration of electric vehicles with a unique balancing strategy. Electrical Engineering, 103, 2647–2660.
- [2] Yildiz, S., Sayan, H.H. 2024. LCL Filter Design and Simulation for Vehicle-To-Grid (V2G) Applications. In: IMSS 2023.
- [3] Mumtaz, F., Yahaya, N. Z., Meraj, S. T., Singh, B., Kannan, R., Ibrahim, O. 2021. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Engineering Journal, 12(4), 3747-3763.
- [4] Sahbani, A., Cherif, K., Saad, K. B. 2020. Multiphase Interleaved Bidirectional DC-DC Converter for Electric Vehicles and Smart Grid Applications. International Journal of Smart Grid-ijSmartGrid, 4(2), 80-87.
- [5] Rezaii, R., Nilian, M., Safayatullah, M., Ghosh, S., & Batarseh, I. 2021. A Bidirectional DC-DC Converter with High Conversion Ratios for the Electrical Vehicle Application. In IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, 1-6.
- [6] Elserougi, A., Abdelsalam, I., Massoud, A., Ahmed, S. 2019. A bidirectional non-isolated hybrid modular DC–DC converter with zero-voltage switching. Electric Power Systems Research, 167, 277-289.
- [7] Hernandez, F. D., Samanbakhsh, R., Mohammadi, P., Ibanez, F. M. 2021. A dual-input high-gain bidirectional DC/DC converter for hybrid energy storage systems in DC grid applications. IEEE Access, 9, 164006-164016.
- [8] Suresh, K., Bharatiraja, C., Chellammal, N., Tariq, M., Chakrabortty, R. K., Ryan, M. J., Alamri, B. 2021. A multifunctional non-isolated dual input-dual output converter for electric vehicle applications. IEEE Access, 9, 64445-64460.
- [9] Al-Obaidi, N. A., Abbas, R. A., & Khazaal, H. F. 2022. A review of non-isolated bidirectional DC-DC converters for hybrid energy storage system. In 2022 5th International Conference on Engineering Technology and its Applications (IICETA), 248-253.
- [10] Pramanik, R., Pati, B. B. 2023. Modelling and control of a non-isolated half-bridge bidirectional DC-DC converter with an energy management topology applicable with EV/HEV. Journal of King Saud University-Engineering Sciences, 35(2), 116-122.
- [11] Varesi, K., Hosseini, S. H., Sabahi, M., Babaei, E., Vosoughi, N. 2017. Performance and design analysis of an improved non‐isolated multiple input buck DC–DC converter. IET Power Electronics, 10(9), 1034-1045.
- [12] Shayeghi, H., Pourjafar, S., Hashemzadeh, S. M. 2021. A switching capacitor based multi‐port bidirectional DC–DC converter. IET Power Electronics, 14(9), 1622-1636.
- [13] Punna, S., Manthati, U. B., Chirayarukil Raveendran, A. 2021. Modeling, analysis, and design of novel control scheme for two‐input bidirectional DC‐DC converter for HESS in DC microgrid applications. International Transactions on Electrical Energy Systems, 31(10), e12774.
- [14] Saadatizadeh, Z., Chavoshipour Heris, P., Sabahi, M., Tarafdar Hagh, M., Maalandish, M. 2018. A new non‐isolated free ripple input current bidirectional DC‐DC converter with capability of zero voltage switching. International Journal of Circuit Theory and Applications, 46(3), 519-542.
- [15] Qi, X., Wang, Y., Wang, Y., Chen, Z. 2021. Optimization of centralized equalization systems based on an integrated cascade bidirectional DC–DC converter. IEEE Transactions on Industrial Electronics, 69(1), 249-259.
- [16] Khan, M. A., Ahmed, A., Husain, I., Sozer, Y., Badawy, M. 2015. Performance analysis of bidirectional DC–DC converters for electric vehicles. IEEE transactions on industry applications, 51(4), 3442-3452.
- [17] De Melo, R. R., Tofoli, F. L., Daher, S., Antunes, F. L. M. 2020. Interleaved bidirectional DC–DC converter for electric vehicle applications based on multiple energy storage devices. Electrical Engineering, 102, 2011-2023.
- [18] Bahravar, S., Abbaszadeh, K., Olamaei, J. 2021. High step-up non-isolated DC–DC converter using diode–capacitor cells. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 81-96.
- [19] Cheng, X. F., Liu, C., Wang, D., Zhang, Y. 2021. State-of-the-art review on soft-switching technologies for non-isolated DC-DC converters. IEEE Access, 9, 119235-119249.
- [20] Dutta, S., Rathore, A., Khadkikar, K. V., Zeineldin, H. 2021. Single-Phase Bridgeless Cuk-Derived DC-DC Converter for Vehicle-to-Vehicle Charge Transfer. IEEE Transportation Electrification Conference (ITEC-India), New Delhi, India, 1-6.
- [21] Artal-Sevil, J. S., Ballestín-Bernad, V., Anzola, J., Domínguez-Navarro, J. A. 2021. High-Gain Non-isolated DC-DC Partial-Power Converter for Automotive Applications. IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 1-6.
- [22] Halder, T. 2023. Modelling and Simulation of a Bi-Directional DC to DC Converter System. 2nd Edition of IEEE Delhi Section Flagship Conference (DELCON), Rajpura, India, 1-6.
- [23] Camara, M.B., Gualous, H., Gustin, F. 2010. DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applicationspolynomial control strategy. IEEE Trans. Ind. Elect. 57 (2), 587–597.