A low-voltage, high-performing CMOS transistor based on multiple- output operation transconductance amplifier for current mode KHN Universal filter applications
This study proposes a current-mode KHN universal filter design that can perform three standard functions simultaneously: low-pass, high-pass, and band-pass. The circuit is built around a multiple-output operation transconductance amplifier (MO-OTA), which allows for electronically adjustable pole frequency and quality factor by modifying input bias currents (IB). The circuit layout is straightforward, with two MO-OTAs and two grounded capacitors, eliminating the need for external resistors and depending entirely on grounded components. Because of its simplicity, the circuit is suited for use in a tiny, efficient design. The proposed circuit's operation was validated using LT-Spice simulations, and the results were in line with theoretical expectations. The circuit used around 298μW of power at ±0.2V power supply voltages. These results demonstrate the circuit's potential for low-power applications, which are crucial in many modern electronic devices. The suggested current-mode KHN universal filter offers a viable option for combining various filter functions in a single circuit with customizable parameters. Its simplicity, efficiency, and performance qualities make it a feasible choice for incorporation into a variety of electronic systems, allowing for more filter design freedom.
[1] Mohammed, A.A., Mahmood, Z.K. & Demirel, H. (2024). New Z copy-current differencing transconductance amplifier active filter using FinFET transistor based current Mode Universal Filter. Global Journal of Engineering and Technology Advances, 18(02),001-005.
[2] Demirel, H., & Ahmed, A. (2024). New FinFet Transistor Implementation of Floating and Grounded Inductance Simulator Based on Active Elements. Global Journal of Engineering Science, 9(3), 647–653.
[3] Mohammed, A. A., Demirel, H., & Mahmood, Z. K. (2023). Analysis fin field-effect transistor design with high-k insulators. Nexo Revista Científica, 36(06), 892-905.
[4] Mohammed, A.A. & Demirel, H. (2023). Integration of Quadrature Oscillator and Floating Inductor in FinFET Transistor Design: Innovations and Applications. Iranian Journal of Electrical & Electronic Engineering, 19(04), 1.
[5] Shaik, M. H., & Kumari, R. P. (2022). Design and Analysis of Analog Filters for Signal Processing Applications. International Journal of Electronics and Communication Engineering, 10(3), 145-157.
[6] Smith, J., & Brown, L. (2020). Design and Analysis of Analog Frequency Filtering Circuits. Journal of Analog Electronics, 35(2), 123-134.
[7] Sedra, A. S., & Smith, K. C. (2016). Microelectronic Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(5), 1410-1422.
[8] Demirel, H., (2017). Elektronik II, Birsen Publish House, İstanbul.
[9] Ahmed, A., & Demirel, H. (2023). DESIGN Third order Sinusoidal Oscillator Employing Current Differencing Cascaded Trans conductance Amplifiers. Gazi University Journal of Science Part C: Design and Technology, 11(3), 735-743.
[10] Shakir, A. M. (2017). Design of Voltage Mode 6th Order Elliptic Band-pass Filter Using Z-Copy Current Follower Transconductance Amplifier) ZC-CFTA. Kirkuk University Journal-Scientific Studies, 12(2), 271-285.
[11] Demirel, H., & Ahmed, A. (2023). A Low-Power 30MHz, 6th Order Bandpass Differential Gm-C Filter on Chip Utilizing Floating Current Source. Kastamonu University Journal of Engineering and Sciences, 9(2), 96-103.
[12] Jaikla, W., & Lahiri, A. (2012). Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. AEÜ–Int. J. Electron. Commun., 66, 214–218.
[13] Sa-Ngiamvibool, W., & Jantakun, A. (2014). Quadrature oscillator using CCCCTAs and grounded capacitors with amplitude controllability. International Journal of Electronics, 101, 1737–1758.
[14] Demirel, H., (2017), Elektronik II. İstanbul Birsen Publishing.
[15] Horng, J.W. (2011). Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Indian Journal of Pure and Applied Physics, 49, 494–498.
[16] Prommee, P., & Dejhan, K. (2002). An integrable electronic controlled sinusoidal oscillator using CMOS operational transconductance amplifier. International Journal of Electronics, 89, 365–379.
[17] Jaikla, W., & Lahiri, A. (2012). Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. AEÜ–Int. J. Electron. Commun., 66, 214–218.
[19] Senani, R., Bhaskar, D. R., Singh, V. K., & Sharma, R. K. (2016). Sinusoidal Oscillators and Waveform Generators Using Modern Electronic Circuit Building Blocks. Cham, Switzerland: Springer.
[20] Horng, J.W., Lee, H., & Wu, J.Y. (2010). Electronically tunable third-order quadrature oscillator using CDTAs. Radio Engineering, 19, 326–330.
Akım modu KHN Evrensel filtre uygulamaları için çoklu çıkışlı işlem transiletkenlik amplifikatörüne dayanan düşük voltajlı, yüksek performanslı bir CMOS transistör
Bu çalışma, aynı anda üç geleneksel işlevi yerine getirebilen akım modu KHN evrensel filtre tasarımı sunmaktadır: düşük geçişli, yüksek geçişli ve bant geçişi. Devre, giriş yanlılık akımlarını (IB) ayarlayarak elektronik olarak değişken kutup frekansı ve kalite faktörüne izin veren çoklu çıkışlı işlem transiletkenlik amplifikatörüne (MO-OTA) dayanmaktadır. Devre topolojisi, iki MO-OTA ve iki topraklanmış kapasitör ile temeldir, harici direnç gereksinimini ortadan kaldırır ve yalnızca topraklanmış parçalara dayanır. Basitliği nedeniyle, devre küçük, verimli bir tasarıma dahil etmek için idealdir. Önerilen devrenin işleyişi LT-Spice simülasyonları kullanılarak doğrulandı ve sonuçlar teorik beklentilerle iyi uyumluydu. Devrenin en büyük güç kullanımı ± 0.2V güç kaynağı voltajlarında 290μW civarındaydı. Bu bulgular, devrenin birçok mevcut elektronik cihaz için kritik olan düşük güçlü uygulamalar için uygunluğunu göstermektedir. Önerilen akım modu KHN evrensel filtresi, çeşitli filtre işlevlerini tek bir devrede özelleştirilebilir parametrelerle birleştirmek için uygun bir seçenek sunar. Sadeliği, verimliliği ve performans nitelikleri, onu çeşitli elektronik sistemlere dahil etmek için uygun bir seçim haline getirerek daha fazla filtre tasarım özgürlüğü sağlar.
[1] Mohammed, A.A., Mahmood, Z.K. & Demirel, H. (2024). New Z copy-current differencing transconductance amplifier active filter using FinFET transistor based current Mode Universal Filter. Global Journal of Engineering and Technology Advances, 18(02),001-005.
[2] Demirel, H., & Ahmed, A. (2024). New FinFet Transistor Implementation of Floating and Grounded Inductance Simulator Based on Active Elements. Global Journal of Engineering Science, 9(3), 647–653.
[3] Mohammed, A. A., Demirel, H., & Mahmood, Z. K. (2023). Analysis fin field-effect transistor design with high-k insulators. Nexo Revista Científica, 36(06), 892-905.
[4] Mohammed, A.A. & Demirel, H. (2023). Integration of Quadrature Oscillator and Floating Inductor in FinFET Transistor Design: Innovations and Applications. Iranian Journal of Electrical & Electronic Engineering, 19(04), 1.
[5] Shaik, M. H., & Kumari, R. P. (2022). Design and Analysis of Analog Filters for Signal Processing Applications. International Journal of Electronics and Communication Engineering, 10(3), 145-157.
[6] Smith, J., & Brown, L. (2020). Design and Analysis of Analog Frequency Filtering Circuits. Journal of Analog Electronics, 35(2), 123-134.
[7] Sedra, A. S., & Smith, K. C. (2016). Microelectronic Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(5), 1410-1422.
[8] Demirel, H., (2017). Elektronik II, Birsen Publish House, İstanbul.
[9] Ahmed, A., & Demirel, H. (2023). DESIGN Third order Sinusoidal Oscillator Employing Current Differencing Cascaded Trans conductance Amplifiers. Gazi University Journal of Science Part C: Design and Technology, 11(3), 735-743.
[10] Shakir, A. M. (2017). Design of Voltage Mode 6th Order Elliptic Band-pass Filter Using Z-Copy Current Follower Transconductance Amplifier) ZC-CFTA. Kirkuk University Journal-Scientific Studies, 12(2), 271-285.
[11] Demirel, H., & Ahmed, A. (2023). A Low-Power 30MHz, 6th Order Bandpass Differential Gm-C Filter on Chip Utilizing Floating Current Source. Kastamonu University Journal of Engineering and Sciences, 9(2), 96-103.
[12] Jaikla, W., & Lahiri, A. (2012). Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. AEÜ–Int. J. Electron. Commun., 66, 214–218.
[13] Sa-Ngiamvibool, W., & Jantakun, A. (2014). Quadrature oscillator using CCCCTAs and grounded capacitors with amplitude controllability. International Journal of Electronics, 101, 1737–1758.
[14] Demirel, H., (2017), Elektronik II. İstanbul Birsen Publishing.
[15] Horng, J.W. (2011). Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Indian Journal of Pure and Applied Physics, 49, 494–498.
[16] Prommee, P., & Dejhan, K. (2002). An integrable electronic controlled sinusoidal oscillator using CMOS operational transconductance amplifier. International Journal of Electronics, 89, 365–379.
[17] Jaikla, W., & Lahiri, A. (2012). Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. AEÜ–Int. J. Electron. Commun., 66, 214–218.
[19] Senani, R., Bhaskar, D. R., Singh, V. K., & Sharma, R. K. (2016). Sinusoidal Oscillators and Waveform Generators Using Modern Electronic Circuit Building Blocks. Cham, Switzerland: Springer.
[20] Horng, J.W., Lee, H., & Wu, J.Y. (2010). Electronically tunable third-order quadrature oscillator using CDTAs. Radio Engineering, 19, 326–330.
Demirel, H. (2024). A low-voltage, high-performing CMOS transistor based on multiple- output operation transconductance amplifier for current mode KHN Universal filter applications. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 235-239. https://doi.org/10.19113/sdufenbed.1512118
AMA
Demirel H. A low-voltage, high-performing CMOS transistor based on multiple- output operation transconductance amplifier for current mode KHN Universal filter applications. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2024;28(2):235-239. doi:10.19113/sdufenbed.1512118
Chicago
Demirel, Huseyin. “A Low-Voltage, High-Performing CMOS Transistor Based on Multiple- Output Operation Transconductance Amplifier for Current Mode KHN Universal Filter Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 2 (Ağustos 2024): 235-39. https://doi.org/10.19113/sdufenbed.1512118.
EndNote
Demirel H (01 Ağustos 2024) A low-voltage, high-performing CMOS transistor based on multiple- output operation transconductance amplifier for current mode KHN Universal filter applications. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 2 235–239.
IEEE
H. Demirel, “A low-voltage, high-performing CMOS transistor based on multiple- output operation transconductance amplifier for current mode KHN Universal filter applications”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 28, sy. 2, ss. 235–239, 2024, doi: 10.19113/sdufenbed.1512118.
ISNAD
Demirel, Huseyin. “A Low-Voltage, High-Performing CMOS Transistor Based on Multiple- Output Operation Transconductance Amplifier for Current Mode KHN Universal Filter Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/2 (Ağustos 2024), 235-239. https://doi.org/10.19113/sdufenbed.1512118.
JAMA
Demirel H. A low-voltage, high-performing CMOS transistor based on multiple- output operation transconductance amplifier for current mode KHN Universal filter applications. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:235–239.
MLA
Demirel, Huseyin. “A Low-Voltage, High-Performing CMOS Transistor Based on Multiple- Output Operation Transconductance Amplifier for Current Mode KHN Universal Filter Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 2, 2024, ss. 235-9, doi:10.19113/sdufenbed.1512118.
Vancouver
Demirel H. A low-voltage, high-performing CMOS transistor based on multiple- output operation transconductance amplifier for current mode KHN Universal filter applications. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(2):235-9.
Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.