Araştırma Makalesi
BibTex RIS Kaynak Göster

6 Serbestlik Dereceli Robotik Kolun Gelişmiş Simülasyon Teknikleriyle Kapsamlı Dinamik Analizi

Yıl 2025, Cilt: 29 Sayı: 1, 210 - 219, 25.04.2025
https://doi.org/10.19113/sdufenbed.1630060

Öz

Bu makale, 6 serbestlik derecesine (6-DOF) sahip bir robotik kolun dinamik analizini, gelişmiş simülasyon teknikleri kullanarak detaylı bir şekilde sunmaktadır. Çalışma, robot kolun eklem hareketleri, yörünge takibi, yük taşıma, bozucu etkilerin reddi ve dinamik ortamlarda gezinme gibi çeşitli çalışma koşulları altındaki performansını değerlendirmeye odaklanmıştır. Kinematik ve dinamik modeller, Denavit-Hartenberg (D-H) parametreleri ve Lagrange denklemleri kullanılarak geliştirilmiş ve kolun hareket ve kuvvet etkileşimlerinin kapsamlı bir şekilde anlaşılmasını sağlamıştır. Eklem hareketlerine farklı genliklere sahip sinüzoidal girişler uygulanmış ve açısal yer değiştirme, hız, ivme ve tork için detaylı profiller elde edilmiştir. Sonuçlar, taban ekleminin daha geniş dönme hareketlerinden dolayı en büyük torklara maruz kaldığını, bilek eklemlerinin ise hassas kontrol gerektiren daha küçük ve sık ayarlamalar gerçekleştirdiğini ortaya koymaktadır. Çalışma, her bir eklemin benzersiz taleplerini karşılamak için özelleştirilmiş kontrol stratejilerinin ve aktüatör tasarımlarının önemini vurgulamaktadır. Bu bulgular, üretim, tıbbi prosedürler ve uzay araştırmaları gibi alanlarda daha verimli ve sağlam robotik sistemlerin geliştirilmesine katkı sağlamaktadır.

Kaynakça

  • [1] Moran, M.E., Evolution of robotic arms. Journal of robotic surgery, 2007. 1(2): p. 103-111.
  • [2] Kruthika, K., B.K. Kumar, and S. Lakshminarayanan. Design and development of a robotic arm. in 2016 International Conference on Circuits, Controls, Communications and Computing (I4C). 2016. IEEE.
  • [3] Camarillo, D.B., T.M. Krummel, and J.K. Salisbury Jr, Robotic technology in surgery: past, present, and future. The American Journal of Surgery, 2004. 188(4): p. 2-15.
  • [4] FreeDman, D., Robotic. 1991.
  • [5] Murray, R.M., Z. Li, and S.S. Sastry, A mathematical introduction to robotic manipulation. 2017: CRC press.
  • [6] Kucuk, S. and Z. Bingul, Robot kinematics: Forward and inverse kinematics. 2006: INTECH Open Access Publisher London, UK.
  • [7] Waldron, K.J. and J. Schmiedeler, Kinematics. Springer handbook of robotics, 2016: p. 11-36.
  • [8] Featherstone, R. and D. Orin. Robot dynamics: equations and algorithms. in Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (Cat. No. 00CH37065). 2000. IEEE.
  • [9] Lilly, K., Efficient dynamic simulation of robotic mechanisms. Vol. 203. 2012: Springer Science & Business Media.
  • [10] Farman, M., M. Al-Shaibah, Z. Aoraiath, and F. Jarrar, Design of a three degrees of freedom robotic arm. International Journal of Computer Applications, 2018. 179(37): p. 12-17.
  • [11] Kubalak, J.R., et al., Design and realization of a 6 degree of freedom robotic extrusion platform. 2016.
  • [12] Huo, Z., M. Yuan, S. Zhang, and X. Zhang. Observer-Based Adaptive Robust Force Control of a Robotic Manipulator Integrated with External Force/Torque Sensor. in Actuators. 2025. MDPI.
  • [13] Hayat, A.A., R.G. Chittawadigi, A.D. Udai, and S.K. Saha. Identification of Denavit-Hartenberg parameters of an industrial robot. in Proceedings of conference on advances in robotics. 2013.
  • [14] Rocha, C., C. Tonetto, and A. Dias, A comparison between the Denavit–Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators. Robotics and Computer-Integrated Manufacturing, 2011. 27(4): p. 723-728.
  • [15] Granja, M., et al. Comparison between standard and modified denavit-hartenberg methods in robotics modelling. in Proceedings of the 2nd World Congress on Mechanical, Chemical, and Material Engineering (MCM’16) Budapest, Hungary. 2016.
  • [16] Kurdila, A.J. and P. Ben-Tzvi, Dynamics and control of robotic systems. 2019.
  • [17] Spong, M.W. and M. Vidyasagar, Robot dynamics and control. 2008: John Wiley & Sons.
  • [18] Tchoń, K. and J. Ratajczak, General Lagrange-type Jacobian inverse for nonholonomic robotic systems. IEEE Transactions on Robotics, 2017. 34(1): p. 256-263.
  • [19] Li, X., X. Wang, and J. Wang, A kind of lagrange dynamic simplified modeling method for multi-DOF robot 1. Journal of Intelligent & Fuzzy Systems, 2016. 31(4): p. 2393-2401.
  • [20] De Luca, A. and L. Ferrajoli. A modified Newton-Euler method for dynamic computations in robot fault detection and control. in 2009 IEEE International Conference on Robotics and Automation. 2009. IEEE.
  • [21] Hwang, Y.-L., Recursive Newton–Euler formulation for flexible dynamic manufacturing analysis of open-loop robotic systems. The International Journal of Advanced Manufacturing Technology, 2006. 29: p. 598-604.
  • [22] Iqbal, J., R.U. Islam, and H. Khan, Modeling and analysis of a 6 DOF robotic arm manipulator. Canadian Journal on Electrical and Electronics Engineering, 2012. 3(6): p. 300-306.
  • [23] Pratheep, V., et al. Design and Analysis of six DOF robotic manipulator. in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing.
  • [24] Aghili, F. and K. Parsa. A robot with adjustable dh parameters. in 2007 International Conference on Mechatronics and Automation. 2007. IEEE.
  • [25] Zhang, T., Y. Song, H. Wu, and Q. Wang, A novel method to identify DH parameters of the rigid serial-link robot based on a geometry model. Industrial Robot: the international journal of robotics research and application, 2021. 48(1): p. 157-167.
  • [26] Natale, C. and M. Gandhi, Interaction control of robot manipulators: six degrees-of-freedom tasks. Appl. Mech. Rev., 2004. 57(2): p. B10-B10.
  • [27] Kobayashi, Y., et al., Development of a robotic system with six‐degrees‐of‐freedom robotic tool manipulators for single‐port surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2015. 11(2): p. 235-246.
  • [28] Shafei, A. and H. Shafei, Dynamic modeling of tree-type robotic systems by combining 3× 3 rotation and 4× 4 transformation matrices. Multibody System Dynamics, 2018. 44(4): p. 367-395.
  • [29] Salvietti, G., M. Malvezzi, G. Gioioso, and D. Prattichizzo. On the use of homogeneous transformations to map human hand movements onto robotic hands. in 2014 IEEE International Conference on Robotics and Automation (ICRA). 2014. IEEE.
  • [30] Falkenhahn, V., et al., Dynamic modeling of bellows-actuated continuum robots using the Euler–Lagrange formalism. IEEE Transactions on Robotics, 2015. 31(6): p. 1483-1496.
  • [31] Jain, A. and G. Rodriguez, Diagonalized Lagrangian robot dynamics. IEEE Transactions on Robotics and Automation, 1995. 11(4): p. 571-584.
  • [32] Stroe, I., S. Staicu, and A. Craifaleanu. Internal forces calculus of compass robotic arm using Lagrange equations. in 10th ESA Workshop on Advanced Space Technologies for Robotics and Automation ‘ASTRA. 2011.
  • [33] Sharkawy, A.-N., Impact of Inertial and External Forces on Joint Dynamics of Robotic Manipulator: Experimental Insights. Control Systems and Optimization Letters, 2025. 3(1): p. 1-7.
  • [34] New, K. and W.P. Maung, Dynamic Simulation And Motion Load Analysis Of Six DOF Articulated Robotic Arm. International Journal of Mechanical and Production Engineering, 2018. 6(5): p. 13-17.
  • [35] Shamir, T., The singularities of redundant robot arms. The International journal of robotics research, 1990. 9(1): p. 113-121.
  • [36] Remis, S.J. and M.M. Stanisic, Design of a singularity-free articulated arm subassembly. IEEE transactions on robotics and automation, 1993. 9(6): p. 816-824.

Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques

Yıl 2025, Cilt: 29 Sayı: 1, 210 - 219, 25.04.2025
https://doi.org/10.19113/sdufenbed.1630060

Öz

This paper presents a detailed dynamic analysis of a six degrees of freedom (6-DOF) robotic arm using advanced simulation techniques in MATLAB Simulink. The study focuses on evaluating the robotic arm's performance under various operational conditions, including joint movements, trajectory tracking, payload handling, disturbance rejection, and navigation in dynamic environments. Kinematic and dynamic models were developed using the Denavit-Hartenberg (D-H) parameters and Lagrange equations, enabling a comprehensive understanding of the arm's motion and force interactions. Sinusoidal inputs with varying amplitudes were applied to the joints, producing detailed profiles for angular displacement, velocity, acceleration, and torque. The findings reveal that the base joint experiences the largest torques due to its role in broader rotational movements, while wrist joints exhibit smaller, more frequent adjustments required for precise control. The study emphasizes the importance of tailored control strategies and actuator designs to meet the unique demands of each joint. These insights contribute to the development of more efficient and robust robotic systems, with applications in manufacturing, medical procedures, and space exploration.

Kaynakça

  • [1] Moran, M.E., Evolution of robotic arms. Journal of robotic surgery, 2007. 1(2): p. 103-111.
  • [2] Kruthika, K., B.K. Kumar, and S. Lakshminarayanan. Design and development of a robotic arm. in 2016 International Conference on Circuits, Controls, Communications and Computing (I4C). 2016. IEEE.
  • [3] Camarillo, D.B., T.M. Krummel, and J.K. Salisbury Jr, Robotic technology in surgery: past, present, and future. The American Journal of Surgery, 2004. 188(4): p. 2-15.
  • [4] FreeDman, D., Robotic. 1991.
  • [5] Murray, R.M., Z. Li, and S.S. Sastry, A mathematical introduction to robotic manipulation. 2017: CRC press.
  • [6] Kucuk, S. and Z. Bingul, Robot kinematics: Forward and inverse kinematics. 2006: INTECH Open Access Publisher London, UK.
  • [7] Waldron, K.J. and J. Schmiedeler, Kinematics. Springer handbook of robotics, 2016: p. 11-36.
  • [8] Featherstone, R. and D. Orin. Robot dynamics: equations and algorithms. in Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (Cat. No. 00CH37065). 2000. IEEE.
  • [9] Lilly, K., Efficient dynamic simulation of robotic mechanisms. Vol. 203. 2012: Springer Science & Business Media.
  • [10] Farman, M., M. Al-Shaibah, Z. Aoraiath, and F. Jarrar, Design of a three degrees of freedom robotic arm. International Journal of Computer Applications, 2018. 179(37): p. 12-17.
  • [11] Kubalak, J.R., et al., Design and realization of a 6 degree of freedom robotic extrusion platform. 2016.
  • [12] Huo, Z., M. Yuan, S. Zhang, and X. Zhang. Observer-Based Adaptive Robust Force Control of a Robotic Manipulator Integrated with External Force/Torque Sensor. in Actuators. 2025. MDPI.
  • [13] Hayat, A.A., R.G. Chittawadigi, A.D. Udai, and S.K. Saha. Identification of Denavit-Hartenberg parameters of an industrial robot. in Proceedings of conference on advances in robotics. 2013.
  • [14] Rocha, C., C. Tonetto, and A. Dias, A comparison between the Denavit–Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators. Robotics and Computer-Integrated Manufacturing, 2011. 27(4): p. 723-728.
  • [15] Granja, M., et al. Comparison between standard and modified denavit-hartenberg methods in robotics modelling. in Proceedings of the 2nd World Congress on Mechanical, Chemical, and Material Engineering (MCM’16) Budapest, Hungary. 2016.
  • [16] Kurdila, A.J. and P. Ben-Tzvi, Dynamics and control of robotic systems. 2019.
  • [17] Spong, M.W. and M. Vidyasagar, Robot dynamics and control. 2008: John Wiley & Sons.
  • [18] Tchoń, K. and J. Ratajczak, General Lagrange-type Jacobian inverse for nonholonomic robotic systems. IEEE Transactions on Robotics, 2017. 34(1): p. 256-263.
  • [19] Li, X., X. Wang, and J. Wang, A kind of lagrange dynamic simplified modeling method for multi-DOF robot 1. Journal of Intelligent & Fuzzy Systems, 2016. 31(4): p. 2393-2401.
  • [20] De Luca, A. and L. Ferrajoli. A modified Newton-Euler method for dynamic computations in robot fault detection and control. in 2009 IEEE International Conference on Robotics and Automation. 2009. IEEE.
  • [21] Hwang, Y.-L., Recursive Newton–Euler formulation for flexible dynamic manufacturing analysis of open-loop robotic systems. The International Journal of Advanced Manufacturing Technology, 2006. 29: p. 598-604.
  • [22] Iqbal, J., R.U. Islam, and H. Khan, Modeling and analysis of a 6 DOF robotic arm manipulator. Canadian Journal on Electrical and Electronics Engineering, 2012. 3(6): p. 300-306.
  • [23] Pratheep, V., et al. Design and Analysis of six DOF robotic manipulator. in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing.
  • [24] Aghili, F. and K. Parsa. A robot with adjustable dh parameters. in 2007 International Conference on Mechatronics and Automation. 2007. IEEE.
  • [25] Zhang, T., Y. Song, H. Wu, and Q. Wang, A novel method to identify DH parameters of the rigid serial-link robot based on a geometry model. Industrial Robot: the international journal of robotics research and application, 2021. 48(1): p. 157-167.
  • [26] Natale, C. and M. Gandhi, Interaction control of robot manipulators: six degrees-of-freedom tasks. Appl. Mech. Rev., 2004. 57(2): p. B10-B10.
  • [27] Kobayashi, Y., et al., Development of a robotic system with six‐degrees‐of‐freedom robotic tool manipulators for single‐port surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 2015. 11(2): p. 235-246.
  • [28] Shafei, A. and H. Shafei, Dynamic modeling of tree-type robotic systems by combining 3× 3 rotation and 4× 4 transformation matrices. Multibody System Dynamics, 2018. 44(4): p. 367-395.
  • [29] Salvietti, G., M. Malvezzi, G. Gioioso, and D. Prattichizzo. On the use of homogeneous transformations to map human hand movements onto robotic hands. in 2014 IEEE International Conference on Robotics and Automation (ICRA). 2014. IEEE.
  • [30] Falkenhahn, V., et al., Dynamic modeling of bellows-actuated continuum robots using the Euler–Lagrange formalism. IEEE Transactions on Robotics, 2015. 31(6): p. 1483-1496.
  • [31] Jain, A. and G. Rodriguez, Diagonalized Lagrangian robot dynamics. IEEE Transactions on Robotics and Automation, 1995. 11(4): p. 571-584.
  • [32] Stroe, I., S. Staicu, and A. Craifaleanu. Internal forces calculus of compass robotic arm using Lagrange equations. in 10th ESA Workshop on Advanced Space Technologies for Robotics and Automation ‘ASTRA. 2011.
  • [33] Sharkawy, A.-N., Impact of Inertial and External Forces on Joint Dynamics of Robotic Manipulator: Experimental Insights. Control Systems and Optimization Letters, 2025. 3(1): p. 1-7.
  • [34] New, K. and W.P. Maung, Dynamic Simulation And Motion Load Analysis Of Six DOF Articulated Robotic Arm. International Journal of Mechanical and Production Engineering, 2018. 6(5): p. 13-17.
  • [35] Shamir, T., The singularities of redundant robot arms. The International journal of robotics research, 1990. 9(1): p. 113-121.
  • [36] Remis, S.J. and M.M. Stanisic, Design of a singularity-free articulated arm subassembly. IEEE transactions on robotics and automation, 1993. 9(6): p. 816-824.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mekatronik Mühendisliği
Bölüm Makaleler
Yazarlar

Merdan Özkahraman 0000-0002-3501-6497

Yayımlanma Tarihi 25 Nisan 2025
Gönderilme Tarihi 30 Ocak 2025
Kabul Tarihi 8 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Özkahraman, M. (2025). Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 210-219. https://doi.org/10.19113/sdufenbed.1630060
AMA Özkahraman M. Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2025;29(1):210-219. doi:10.19113/sdufenbed.1630060
Chicago Özkahraman, Merdan. “Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 1 (Nisan 2025): 210-19. https://doi.org/10.19113/sdufenbed.1630060.
EndNote Özkahraman M (01 Nisan 2025) Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 1 210–219.
IEEE M. Özkahraman, “Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 1, ss. 210–219, 2025, doi: 10.19113/sdufenbed.1630060.
ISNAD Özkahraman, Merdan. “Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/1 (Nisan2025), 210-219. https://doi.org/10.19113/sdufenbed.1630060.
JAMA Özkahraman M. Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:210–219.
MLA Özkahraman, Merdan. “Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 1, 2025, ss. 210-9, doi:10.19113/sdufenbed.1630060.
Vancouver Özkahraman M. Comprehensive Dynamic Analysis of a 6-DOF Robotic Arm Using Advanced Simulation Techniques. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(1):210-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.