Araştırma Makalesi
BibTex RIS Kaynak Göster

Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University

Yıl 2025, Cilt: 29 Sayı: 3, 590 - 601, 25.12.2025
https://doi.org/10.19113/sdufenbed.1706928

Öz

This study provides a comprehensive energy, economic, and environmental analysis of a commercial vertical-axis wind turbine (VAWT) for urban-scale applications. In accordance with the objective of this study, Doğuş University has been considered as a case study for conducting these analyses. In the analyses, wind speed data obtained from the meteorological station closest to the university, along with the technical specifications of a commercial vertical-axis wind turbine with a rated power of 5 kW, were considered as the basis. In the energy analysis, the amount of electricity generated by the turbine is calculated, while the economic analysis determines the revenue from electricity production, the additional revenue from the reduction of greenhouse gas emissions, and the total annual revenue. Additionally, the environmental analysis evaluates the potential for CO₂ emissions reduction. As a result of the study, the power density was calculated as 41.76 W/m² and 41.3 W/m², based on the Weibull distribution and meteorological data. Furthermore, calculations for a single wind turbine indicated that 2062.6 kWh of electricity production and a reduction of 947.98 kg of CO₂ emissions could be achieved in 2024. From an economic perspective, the total annual revenue is determined to be $241.10, with a Levelized Cost of Energy (LCOE) of 0.193 $/kWh. Based on the findings, it is believed that this study can play a guiding role in the planning and evaluation of wind energy systems for similar buildings and urban areas.

Kaynakça

  • [1] Ghafoorian, F., Mirmotahari, S. R., Eydizadeh, M., ve Mehrpooya, M. 2025. A systematic investigation on the hybrid Darrieus-Savonius vertical axis wind turbine aerodynamic performance and self-starting capability improvement by installing a curtain. Next Energy, 6, 100203.
  • [2] Aslam Bhutta, M. M., Hayat, N., Farooq, A. U., Ali, Z., Jamil, S. R., Hussain, Z. 2012. Vertical axis wind turbine - A review of various configurations and design techniques. Renew. Sustain. Energy Rev., 16(4), 1926–1939.
  • [3] https://wwindea.org/GlobalStatistics, (Access Date: 25.03.2025).
  • [4] Guo, W., Gong, S., Shen, Z., Gong, Y., Lu, H. 2024. Effects of internal rotor parameters on the performance of curved blade-straight blade vertical axis wind turbine. Energy Convers. Manag., 321, 119078.
  • [5] Seifi Davari, H., Botez, R. M., Seify Davari, M., Chowdhury, H., Hosseinzadeh, H. 2024. Numerical and experimental investigation of Darrieus vertical axis wind turbines to enhance self-starting at low wind speeds. Results Eng., 24 103240.
  • [6] Shen, Z., Gong, S., Zuo, Z., Chen, Y., Guo, W. 2024 Darrieus vertical-axis wind turbine performance enhancement approach and optimized design: A review. Ocean Eng., 311, 118965.
  • [7] Chen, W.H., Chen, C.Y., Huang, C.Y., Hwang, C.J. 2017. Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Applied energy, 185, 223-232.
  • [8] Omer, A. G., Alsahlani, A.A., Mohamed-Alsultan G., Abdulkareem, A. G., Nassar M.F., Kurniawan T.A., Taufiq, Yap. Y. H. 2024.Towards zero emission: exploring innovations in wind turbine design for sustainable energy a comprehensive review. Service Oriented Computing and Applications, 1-37.
  • [9] Islam, M., Ting, D.S.K., Fartaj, A. 2008. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev., 12, 1087–1109.
  • [10] Balduzzi, F., Bianchini, A., Carnevale, E.A., Ferrari, L., Magnani, S. 2012. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy, 97, 921–929.
  • [11] Lee, K.Y., Tsao, S.H., Tzeng, C.W., Lin, H.J. 2018. Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building. Appl. Energy, 209, 383–391.
  • [12] Basack, S., Podder, S., Dutta, S., Lucchi, E. 2025. Performance Analysis and Numerical Modeling of Mechanical and Electrical Components in a Rooftop Vertical-Axis Wind Turbine. Energies, 18(7), 1623.
  • [13] Loganathan, B., Chowdhury, H., Mustary, I., Rana, M.M., Alam, F. 2019. Design of a micro wind turbine and its economic feasibility study for residental power generation in built-up areas. Energy Procedia, 160, 812–819.
  • [14] Akhan, H. 2024. Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey. Karaelmas Fen ve Mühendislik Dergisi, 14(3), 44-63.
  • [15] S Saleh, Y.A.S., Austin, M.C., Carpino, C., Turhan, C. 2024. Determining Payback Period and Comparing Two Small-Scale Vertical Axis Wind Turbines Installed at the Top of Residential Buildings. Int. J. Archit. Eng. Technol., 11, 1–16.
  • [16] Rosato, A., Perrotta, A. and Maffei, L. 2024. Dynamic simulation of different vertical axis micro wind turbines serving a typical house in Italy: assessment of energy, environmental and economic impacts. E3S Web Conf., 572.
  • [17] Chong, W.T., Fazlizan, A., Poh, S.C., Pan, K.C., Hew, W.P., Hsiao, F.B. 2013. The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Appl. Energy, 112, 601–609.
  • [18] Casini, M. 2016. Small vertical axis wind turbines for energy efficiency of buildings. Journal of Clean Energy Technologies, 4(1), 56-65.
  • [19] Turhan, C., Abed Saleh Saleh, Y. 2024. A case study for small-scale vertical wind turbine Integrated building energy saving potential. Journal of Building Design and Environment, 2(1), 24174-24174.
  • [20] Ali, M., Gherissi, A., Altaharwah, Y. 2023. Experimental and simulation study on a rooftop vertical-axis wind turbine. Open Engineering, 13(1), 20220465.
  • [21] Saeidi, D., Sedaghat, A., Alamdari, P., Alemrajabi, A.A. 2013. Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines. Appl. Energy, 101, 765–775.
  • [22] https://www.dartello.com/product/smaraad-3000w-5000w-wind-turbine-generator-complete-kit/ , (Access Date: 10.03.2025).
  • [23] Kim, G., Hur, J. 2021. Probabilistic modeling of wind energy potential for power grid expansion planning. Energy, 230, 120831. [24] An, J., Hong, T. 2024. Energy harvesting using rooftops in urban areas: Estimating the electricity generation potential of PV and wind turbines considering the surrounding environment. Energy Build., 323, 114807.
  • [25] Wan, J., Zheng, F., Luan, H., Tian, Y., Li, L., Ma, Z., Xu, Z., Li, Y. 2021. Assessment of wind energy resources in the urat area using optimized weibull distribution. Sustain Energy Technol Assessments, 47, 101351.
  • [26] Touré, S. 2019. Investigations into Some Simple Expressions of the Gamma Function in Wind Power Theoretical Estimate by the Weibull Distribution. J. Appl. Math. Phys., 7, 2990–3002.
  • [27] Gökçek, M., Bayülken, A., Bekdemir, Ş. 2007. Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey. Renew. Energy, 32, 1739–1752.
  • [28] Aso, R., Cheung, W.M. 2015. Towards greener horizontal-axis wind turbines: Analysis of carbon emissions, energy and costs at the early design stage. J. Clean. Prod., 87, 263–274.
  • [29] Liu, F., Wang, X., Sun, F., Kleidon, A. 2023. Potential impact of global stilling on wind energy production in China. Energy, 263, 125727.
  • [30] Ayodele, T.R., Jimoh, A.A., Munda, J.L., Agee, J.T. 2012. Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa. Energy Convers Manag, 64,614–25.
  • [31] Gökçek M., Genç, M.S. 2009. Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey. Appl Energy, 86(12), 2731-2739.
  • [32] Akan, A.E., Akan, A.P. 2022. Evaluation of feasibility analyses for different hub heights of a wind turbine. J. Energy Syst., 6, 97–107.
  • [33] Mostafaeipour A., Jadidi, M., Mohammadi, K., Sedaghat, A. 2014. An analysis of wind energy potential and economic evaluation in Zahedan, Iran. Renewable and Sustainable Energy Reviews, 30, 641-650.
  • [34] Mostafaeipour, A., Sedaghat, A., Dehghan-Niri, A. A, Kalantar, V. 2011. Wind energy feasibility study for city of Shahrbabak in Iran. Renewable and Sustainable Energy Reviews, 15(6), 2545-2556.
  • [35] Ngoc, D.M., Techato K., Niem, L.D., Yen, N.T.H., Van, D. N., Luengchavanon, M. 2021. A novel 10 kw vertical axis wind tree design: Economic feasibility assessment. Sustainability, 13(22), 12720. [36] Lombardi, L., Mendecka, B., Carnevale, E., Stanek, W. 2018. Environmental impacts of electricity production of micro wind turbines with vertical axis. Renewable Energy, 128, 553-564.
  • [37] Rouf, A., Sudiarto, B., Setiabudy, R. 2020. The techno-economic analysis of vertical axis wind turbine implementation for scattered electricity loads. In IOP Conference Series: Earth and Environmental Science (Vol. 599, No. 1, p. 012016).

Kentsel Uygulamalar İçin Dikey Eksenli Rüzgâr Türbininin Enerji, Ekonomik ve Çevresel Değerlendirmesi: Doğuş Üniversitesi Örneği

Yıl 2025, Cilt: 29 Sayı: 3, 590 - 601, 25.12.2025
https://doi.org/10.19113/sdufenbed.1706928

Öz

Bu çalışma, kentsel ölçekli uygulamalar için ticari bir dikey eksenli rüzgâr türbini (VAWT) üzerinden kapsamlı bir enerji, ekonomik ve çevresel analiz sunmaktadır. Bu çalışmanın amacı doğrultusunda, Doğuş Üniversitesi, bu analizlerin gerçekleştirildiği bir durum çalışması olarak ele alınmıştır. Analizlerde, üniversiteye en yakın meteorolojik istasyondan elde edilen rüzgâr hızı verileri ile 5 kW nominal güce sahip ticari bir dikey eksenli rüzgâr türbininin teknik özellikleri temel alınmıştır. Enerji analizinde, türbinden elde edilen elektrik miktarı hesaplanmış, ekonomik analizde ise elektrik üretiminden sağlanan gelir, sera gazı emisyonlarının azaltılmasından elde edilecek ek gelir ve toplam yıllık gelir belirlenmiştir. Ayrıca, çevresel analizde CO₂ emisyonlarının azaltılma potansiyeli değerlendirilmiştir. Çalışma sonucunda, Weibull dağılımı ve meteorolojik verilere dayanarak güç yoğunluğu sırasıyla 41,76 W/m² ve 41,3 W/m² olarak hesaplanmıştır. Ayrıca, tek bir rüzgâr türbini üzerinden yapılan hesaplamalar, 2024 yılı boyunca 2062,6 kWh elektrik üretimi ve 947,98 kg CO₂ emisyonu azaltımı sağlanabileceğini göstermektedir. Ekonomik açıdan, toplam yıllık gelir 241,10 $ ve seviyelendirilmiş enerji maliyeti (LCOE) 0,193 $/kWh olarak belirlenmiştir. Elde edilen bulgulara dayalı olarak, bu çalışmanın benzer binalar ve kentsel alanlar için rüzgâr enerjisi sistemlerinin planlanması ve değerlendirilmesinde yol gösterici bir rol üstlenebileceği düşünülmektedir.

Kaynakça

  • [1] Ghafoorian, F., Mirmotahari, S. R., Eydizadeh, M., ve Mehrpooya, M. 2025. A systematic investigation on the hybrid Darrieus-Savonius vertical axis wind turbine aerodynamic performance and self-starting capability improvement by installing a curtain. Next Energy, 6, 100203.
  • [2] Aslam Bhutta, M. M., Hayat, N., Farooq, A. U., Ali, Z., Jamil, S. R., Hussain, Z. 2012. Vertical axis wind turbine - A review of various configurations and design techniques. Renew. Sustain. Energy Rev., 16(4), 1926–1939.
  • [3] https://wwindea.org/GlobalStatistics, (Access Date: 25.03.2025).
  • [4] Guo, W., Gong, S., Shen, Z., Gong, Y., Lu, H. 2024. Effects of internal rotor parameters on the performance of curved blade-straight blade vertical axis wind turbine. Energy Convers. Manag., 321, 119078.
  • [5] Seifi Davari, H., Botez, R. M., Seify Davari, M., Chowdhury, H., Hosseinzadeh, H. 2024. Numerical and experimental investigation of Darrieus vertical axis wind turbines to enhance self-starting at low wind speeds. Results Eng., 24 103240.
  • [6] Shen, Z., Gong, S., Zuo, Z., Chen, Y., Guo, W. 2024 Darrieus vertical-axis wind turbine performance enhancement approach and optimized design: A review. Ocean Eng., 311, 118965.
  • [7] Chen, W.H., Chen, C.Y., Huang, C.Y., Hwang, C.J. 2017. Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Applied energy, 185, 223-232.
  • [8] Omer, A. G., Alsahlani, A.A., Mohamed-Alsultan G., Abdulkareem, A. G., Nassar M.F., Kurniawan T.A., Taufiq, Yap. Y. H. 2024.Towards zero emission: exploring innovations in wind turbine design for sustainable energy a comprehensive review. Service Oriented Computing and Applications, 1-37.
  • [9] Islam, M., Ting, D.S.K., Fartaj, A. 2008. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev., 12, 1087–1109.
  • [10] Balduzzi, F., Bianchini, A., Carnevale, E.A., Ferrari, L., Magnani, S. 2012. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy, 97, 921–929.
  • [11] Lee, K.Y., Tsao, S.H., Tzeng, C.W., Lin, H.J. 2018. Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building. Appl. Energy, 209, 383–391.
  • [12] Basack, S., Podder, S., Dutta, S., Lucchi, E. 2025. Performance Analysis and Numerical Modeling of Mechanical and Electrical Components in a Rooftop Vertical-Axis Wind Turbine. Energies, 18(7), 1623.
  • [13] Loganathan, B., Chowdhury, H., Mustary, I., Rana, M.M., Alam, F. 2019. Design of a micro wind turbine and its economic feasibility study for residental power generation in built-up areas. Energy Procedia, 160, 812–819.
  • [14] Akhan, H. 2024. Techno-Economic Assessment of a Hybrid Renewable Energy Powered Electric Vehicle Charging Station For Shopping Mall in Edirne, Turkey. Karaelmas Fen ve Mühendislik Dergisi, 14(3), 44-63.
  • [15] S Saleh, Y.A.S., Austin, M.C., Carpino, C., Turhan, C. 2024. Determining Payback Period and Comparing Two Small-Scale Vertical Axis Wind Turbines Installed at the Top of Residential Buildings. Int. J. Archit. Eng. Technol., 11, 1–16.
  • [16] Rosato, A., Perrotta, A. and Maffei, L. 2024. Dynamic simulation of different vertical axis micro wind turbines serving a typical house in Italy: assessment of energy, environmental and economic impacts. E3S Web Conf., 572.
  • [17] Chong, W.T., Fazlizan, A., Poh, S.C., Pan, K.C., Hew, W.P., Hsiao, F.B. 2013. The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Appl. Energy, 112, 601–609.
  • [18] Casini, M. 2016. Small vertical axis wind turbines for energy efficiency of buildings. Journal of Clean Energy Technologies, 4(1), 56-65.
  • [19] Turhan, C., Abed Saleh Saleh, Y. 2024. A case study for small-scale vertical wind turbine Integrated building energy saving potential. Journal of Building Design and Environment, 2(1), 24174-24174.
  • [20] Ali, M., Gherissi, A., Altaharwah, Y. 2023. Experimental and simulation study on a rooftop vertical-axis wind turbine. Open Engineering, 13(1), 20220465.
  • [21] Saeidi, D., Sedaghat, A., Alamdari, P., Alemrajabi, A.A. 2013. Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines. Appl. Energy, 101, 765–775.
  • [22] https://www.dartello.com/product/smaraad-3000w-5000w-wind-turbine-generator-complete-kit/ , (Access Date: 10.03.2025).
  • [23] Kim, G., Hur, J. 2021. Probabilistic modeling of wind energy potential for power grid expansion planning. Energy, 230, 120831. [24] An, J., Hong, T. 2024. Energy harvesting using rooftops in urban areas: Estimating the electricity generation potential of PV and wind turbines considering the surrounding environment. Energy Build., 323, 114807.
  • [25] Wan, J., Zheng, F., Luan, H., Tian, Y., Li, L., Ma, Z., Xu, Z., Li, Y. 2021. Assessment of wind energy resources in the urat area using optimized weibull distribution. Sustain Energy Technol Assessments, 47, 101351.
  • [26] Touré, S. 2019. Investigations into Some Simple Expressions of the Gamma Function in Wind Power Theoretical Estimate by the Weibull Distribution. J. Appl. Math. Phys., 7, 2990–3002.
  • [27] Gökçek, M., Bayülken, A., Bekdemir, Ş. 2007. Investigation of wind characteristics and wind energy potential in Kirklareli, Turkey. Renew. Energy, 32, 1739–1752.
  • [28] Aso, R., Cheung, W.M. 2015. Towards greener horizontal-axis wind turbines: Analysis of carbon emissions, energy and costs at the early design stage. J. Clean. Prod., 87, 263–274.
  • [29] Liu, F., Wang, X., Sun, F., Kleidon, A. 2023. Potential impact of global stilling on wind energy production in China. Energy, 263, 125727.
  • [30] Ayodele, T.R., Jimoh, A.A., Munda, J.L., Agee, J.T. 2012. Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa. Energy Convers Manag, 64,614–25.
  • [31] Gökçek M., Genç, M.S. 2009. Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey. Appl Energy, 86(12), 2731-2739.
  • [32] Akan, A.E., Akan, A.P. 2022. Evaluation of feasibility analyses for different hub heights of a wind turbine. J. Energy Syst., 6, 97–107.
  • [33] Mostafaeipour A., Jadidi, M., Mohammadi, K., Sedaghat, A. 2014. An analysis of wind energy potential and economic evaluation in Zahedan, Iran. Renewable and Sustainable Energy Reviews, 30, 641-650.
  • [34] Mostafaeipour, A., Sedaghat, A., Dehghan-Niri, A. A, Kalantar, V. 2011. Wind energy feasibility study for city of Shahrbabak in Iran. Renewable and Sustainable Energy Reviews, 15(6), 2545-2556.
  • [35] Ngoc, D.M., Techato K., Niem, L.D., Yen, N.T.H., Van, D. N., Luengchavanon, M. 2021. A novel 10 kw vertical axis wind tree design: Economic feasibility assessment. Sustainability, 13(22), 12720. [36] Lombardi, L., Mendecka, B., Carnevale, E., Stanek, W. 2018. Environmental impacts of electricity production of micro wind turbines with vertical axis. Renewable Energy, 128, 553-564.
  • [37] Rouf, A., Sudiarto, B., Setiabudy, R. 2020. The techno-economic analysis of vertical axis wind turbine implementation for scattered electricity loads. In IOP Conference Series: Earth and Environmental Science (Vol. 599, No. 1, p. 012016).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Selçuk İnaç 0000-0001-5900-2930

Gönderilme Tarihi 26 Mayıs 2025
Kabul Tarihi 8 Aralık 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 3

Kaynak Göster

APA İnaç, S. (2025). Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 590-601. https://doi.org/10.19113/sdufenbed.1706928
AMA İnaç S. Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2025;29(3):590-601. doi:10.19113/sdufenbed.1706928
Chicago İnaç, Selçuk. “Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 3 (Aralık 2025): 590-601. https://doi.org/10.19113/sdufenbed.1706928.
EndNote İnaç S (01 Aralık 2025) Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 3 590–601.
IEEE S. İnaç, “Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 3, ss. 590–601, 2025, doi: 10.19113/sdufenbed.1706928.
ISNAD İnaç, Selçuk. “Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/3 (Aralık2025), 590-601. https://doi.org/10.19113/sdufenbed.1706928.
JAMA İnaç S. Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:590–601.
MLA İnaç, Selçuk. “Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 3, 2025, ss. 590-01, doi:10.19113/sdufenbed.1706928.
Vancouver İnaç S. Energy, Economic and Environmental Evaluation of Vertical Axis Wind Turbine for Urban Applications: A Case Study of Dogus University. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(3):590-601.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.