Araştırma Makalesi
BibTex RIS Kaynak Göster

Potansiyel Bitkisel Yağ Kaynakları Olarak Turunçgil Tohumları: Yağ İçeriği ve Yağın Bazı Kalite Özellikleri

Yıl 2025, Cilt: 29 Sayı: 3, 602 - 609, 25.12.2025
https://doi.org/10.19113/sdufenbed.1712467

Öz

Tarımsal ve endüstriyel atık olan turunçgil tohumlarının yeni potansiyel bir yan olarak değerlendirilmesi bitkisel yağ açığı üzerindeki baskıyı hafifletmekte yeni bir yaklaşım sağlayabilir. Bu çalışmada, Türkiye de yetiştiriciliği yaygın olarak yapılan yedi turunçgil (turunç, kamkat, limon, limkat, mandalina, greyfurt ve tatlı portakal) tohum yağının yağ içeriği, yağ asidi bileşimi ve lipid besin kalite indeks parametreleri belirlenerek, turunçgil tohum yağının kullanımına yönelik teorik bir temel oluşturulması amaçlanmıştır. Sonuçlar, turunçgil tohumlarının yüksek seviyede yağ içerdiğini ve %26.622 (limkat) ile %36.100 (turunç) arasında bir yağa sahip olduğunu göstermektedir. n-hekzan ile ekstrakte edilen tohum yağlarında toplam 13 yağ asidi bileşeni belirlendi ve başlıca yağ asitleri palmitik asit (%23.235-37.074), oleik asit (%19.895-30.207) ve linoleik asit (%29.359-38.006) bileşenleridir. Miristik asit kamkat da, pentadekanoik asit kamkat ve limkat da ve alfa-linolenik asit ise kamkat, limon ve limkat tohumlarında sentezlenmediği belirlenmiştir. Turunçgil tohum yağındaki doymuş yağ asitleri (SFA) %27.951 (kamkat) ile %41.976 (tatlı portakal) arasında ve doymamış yağ asitleri ise %58.023 (tatlı portakal) ile %72.050 (kamkat) arasında değişim göstermiştir. Turunçgil tohum yağların kalitesi ise lipid besin kalite indekslerinin (PUFA/SFA, aterojenite indeksi, trombojenite indeksi, peroksidasyon indeksi, doymamışlık indeksi ve hesaplanan oksitlenebilirlik) hesaplanması ile belirlenmiştir. Hesaplanan besin kalitesi endeksleri türler arasında önemli farklılıklar göstermiştir. Turunçgil tohumlarının yağ bileşimi arasındaki sınıflandırmayı ve korelasyonu araştırmak için hiyerarşik kümeleme analizi kullanıldı ve sonuçlar tohum yağı bileşiminin büyük ölçüde türlere bağlı olduğunu ve buna göre üç grupta sınıflandırılabileceğini göstermiştir. Mevcut çalışmanın sonuçları, turunçgil tohum yağlarının önemli yağ asidi kompozisyonu içermesi ve değerli lipid besin kalite indekslerine sahip olmasından dolayı sağlıklı yenilenebilir yağ için potansiyel bir kaynak olarak ve katma değerli ürünlerin üretimi için kullanılabileceğini göstermektedir.

Kaynakça

  • [1] FAOSTAT, 2025. Statistical database. https://www.fao.org/faostat/en/#data (Accessed May 10, 2025).
  • [2] Zayed, A., Badawy, M. T., Farag, M. A. 2021. Valorization and Extraction Optimization of Citrus Seeds for Food and Functional Food Applications. Food Chemistry, 355, 129609.
  • [3] Liu, W., Mao, X., Zhou, Z. 2022. Analysis of Physicochemical Properties Fatty Acid Composition and Antioxidant Activity of Seed Oil Extracted from 12 Citrus Materials. International Journal of Food Science and Technology, 57(10), 6480-6491.
  • [4] Seyyedi-Mansour, S., Carpena, M., Donn, P., Barciela, P., Perez-Vazquez, A., Echave, J., Pereira, A. G., & Prieto, M. A. 2024. Citrus Seed Waste and Circular Bioeconomy: Insights on Nutritional Profile, Health Benefits, and Application as Food Ingredient. Applied Sciences, 14(20), 9463.
  • [5] Matthaus, B., Özcan, M. M. 2012. Chemical Evaluation of Citrus Seeds, an Agro-Industrial Waste, as a New Potential Source of Vegetable Oils. Grasas Y Aceites, 63(3), 313-320.
  • [6] Anwar, F., Naseer, R., Bhanger, M. I., Ashraf, S., Talpur, F. N., Aladedunye, F. A. 2008. Physico-Chemical Characteristics of Citrus Seeds and Seed Oils from Pakistan. Journal of the American Oil Chemists' Society, 85, 321-330.
  • [7] Suri, S., Singh, A., Nema, P. K. 2022. Current Applications of Citrus Fruit Processing Waste: a Scientific Outlook. Applied Food Research, 2(1), 100050.
  • [8] Waheed, A., Mahmud, S., Saleem, M., Ahmad, T. 2009. Fatty Acid Composition of Neutral Lipid: Classes of Citrus Seed Oil. Journal of Saudi Chemical Society, 13, 269-272.
  • [9] Atolani, O., Adamu, N., Oguntoye, O. S., Zubair, M. F., Fabiyi, O. A., Oyegoke, R. A., Adeyemi, O. S., Areh, E. T., Tarigha, D. E., Kambizi, L., Olatunji, G. A. 2020. Chemical Characterization, Antioxidant, Cytotoxicity, Anti-Toxoplasma Gondii and Antimicrobial Potentials of The Citrus sinensis Seed Oil for Sustainable Cosmeceutical Production. Heliyon, 6(2), e03399.
  • [10] Al Juhaimi, F., Ozcan, M. M., Uslu, N., Ghafoor, K. 2018. The Effect of Drying Temperatures on Antioxidant Activity, Phenolic Compounds, Fatty Acid Composition and Tocopherol Contents in Citrus Seed and Oils. Journal of Food Science and Technology, 55, 190-197.
  • [11] Burnett, C. L., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, D. C., Shank, R. C., Slaga, T. J., Synder, P. W., Gill, L. J., & Heldreth, B. 2021. Safety Assessment of Citrus Fruit-Derived Ingredients as Used in Cosmetics. International Journal of Toxicology, 40, 5-38.
  • [12] Cosmetic Ingredient Review, 2014. Safety Assessment of Citrus-Derived Ingredients as Used in Cosmetics, 1620 L Street NW, Suite 1200, Washington, DC 20036-4702.
  • [13] Duru, S. 2024. Türkiye Bitkisel Yağ Dış Ticaretinin Mevcut Durumu ve Rekabet Gücünün Analizi. Gümrük ve Ticaret Dergisi, 11(35), 25-39.
  • [14] Tonguc, M., Önder, S., Erbaş, S. 2023. Variations in Seed Oil and Chemical Composition Among The Safflower Genotypes (Carthamus tinctorius L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13045-13045.
  • [15] Marquard, R. 1987. Qualitats analytic ImDienste der Ölpflanzenzüchtung. Fat Science Technology, 89, 95-99.
  • [16] Önder, S., Önder, D., Erdoğan, Ü., Waleed Khalid Khalid, S., Tonguç, M. 2025. Composition and Antioxidant Activity of Seed Oil of Date Palm (Phoenix dactylifera L.) Cultivars from Iraq. Genetic Resources and Crop Evolution, 72(4), 3939-3952.
  • [17] Chen, J., Liu, H. 2020. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. International Journal of Molecular Sciences, 21(16), 5695.
  • [18] Ulbricht, T. L. V., Southgate, D. A. T. 1991. Coronary Heart Disease: Seven Dietary Factors. The Lancet, 338(8773), 985-992.
  • [19] Kerr, B. J., Kellner, T. A., Shurson, G. C. 2015. Characteristics of Lipids and Their Feeding Value in Swine Diets. Journal of Animal Science and Biotechnology, 6, 30.
  • [20] Fatemi, S. H., Hammond, E. G. 1980. Analysis of Oleate, Linoleate and Linolenate Hydroperoxides in Oxidized Ester Mixtures. Lipids, 15(5), 379-385.
  • [21] Metsalu, T., Vilo, J. 2015. ClustVis: a Web Tool for Visualizing Clustering of Multivariate Data using Principal Component Analysis and Heatmap. Nucleic Acids Research, 43, 566-570.
  • [22] Juhaimi, F. A. L., Matthäus, B., Özcan, M. M., Ghafoor, K. 2016. The Physico-Chemical Properties of Some Citrus Seeds and Seed Oils. Zeitschrift Für Naturforschung C, 71(3-4), 79-85.
  • [23] Adubofuor, J., Akyereko, Y. G., Batsa, V., Apeku, O. J. D., Amoah, I., Diako, C. 2021. Nutrient Composition and Physical Properties of Two Orange Seed Varieties. International Journal of Food Science, 6415620.
  • [24] Özcan, M. M., Öztürk, Ö., Lemiasheuski, V. 2023. Quality Properties, Fatty Acid Composition, and Mineral Contents of Some Citrus Seeds and Oils Extracted by Solvent Extraction. Erwerbs-Obstbau, 65(1), 127-132.
  • [25] Reazai, M., Mohammadpourfard, I., Nazmara, S., Jahanbakhsh, M., Shiri, L. 2014. Physicochemical Characteristics of Citrus Seed Oils from Kerman, Iran. Journal of Lipids, 174954.
  • [26] Özcan, M. M., İnan, Ö. 2022. Physico-Chemical Properties, Fatty Acid Composition and Tocopherol Contents of Mandarin, Orange and Lemon Seed Oils. Erwerbs-Obstbau, 64(3), 445-453.
  • [27] Samancı, B., Özkaynak, E. 2003. Effect of Planting Date on Seed Yield, Oil Content and Fatty Acid Composition of Safflower (Carthamus tinctorius L.) Cultivars in The Mediterranen Region of Turkey. Journal of Agronomy and Crop Science, 189(5), 359-360.
  • [28] Pritchard, F. M., Eagles, H. A., Norton, R. M., Salisbury, P. A., Nicolas, M. 2006. Environmental Effects on Seed Composition of Victorian Canola. Australian Journal of Experimental Agriculture, 40(5), 679-685.
  • [29] Gölükcü, M., Toker, R., Tokgöz, H., Çınar, O. 2016. The Effect of Harvesting Time on Seed Oil Content and Fatty Acid Composition of Some Lemon and Mandarin Cultivars Grown in Turkey. Journal of Agricultural Sciences, 22(4), 566-575.
  • [30] Rudzińska, M., Hassanein, M. M. M., Abdel-Razek, A. G., Kmiecik, D., Siger, A., Ratusz, K. 2018. Influence of Composition on Degradation During Repeated Deep-Fat Frying of Binary and Ternary Blends of Palm, Sunflower and Soybean Oils with Health-Optimised Saturated-to-Unsaturated Fatty Acid Ratios. International Journal of Food Science & Technology, 53(4), 1021-1029.
  • [31] Nishida, C., Uauy, R. 2009. WHO Scientific Update on Health Consequences of Trans Fatty Acids: Introduction. European Journal of Clinical Nutrition, 63, 1-4.
  • [32] Ajewole, K., Adeyeye, A. 1993. Characterisation of Nigerian Citrus Seed Oils. Food Chemistry, 47(1), 77-78.
  • [33] Garrido, G., Chou, W. H., Vega, C., Goïty, L., Valdés, M. 2019. Influence of Extraction Methods on Fatty Acid Composition, Total Phenolic Content and Antioxidant Capacity of Citrus Seed Oils from The Atacama Desert, Chile. Journal of Pharmacy & Pharmacognosy Research, 7(6), 389-407.
  • [34] Hulbert, A. J., Pamplona, R., Buffenstein, R., Buttemer, W. A. 2007. Life and Death: Metabolic Rate, Membrane Composition, and Life Span of Animals. Physiological Reviews, 87(4), 1175-1213.
  • [35] Hassanien, M. M., Abdel-Razek, A. G., Rudzińska, M., Siger, A., Ratusz, K., Przybylski, R. 2014. Phytochemical Contents and Oxidative Stability of Oils from Non-Traditional Sources. European Journal of Lipid Science and Technology, 116(11), 1563-1571.
  • [36] Siger, A., Dwiecki, K., Borzyszkowski, W., Turski, M., Rudzińska, M., Nogala-Kałucka, M. 2017. Physicochemical Characteristics of The Cold-Pressed Oil Obtained from Seeds of Fagus sylvatica L. Food Chemistry, 225, 239-245.

Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil

Yıl 2025, Cilt: 29 Sayı: 3, 602 - 609, 25.12.2025
https://doi.org/10.19113/sdufenbed.1712467

Öz

Evaluating citrus seeds, classified as agricultural and industrial waste, as a novel potential byproduct may offer a new strategy to mitigate the strain on vegetable oil supply. The present study aimed to identify potential use of citrus seed oil by analyzing the oil and fatty acid content, lipid nutrient quality of 7 citrus oil (bitter orange, kumquat, lemon, limequat, mandarin orange, pomelo and sweet orange) grown in Türkiye. The results indicate that citrus seeds include significant oil concentrations, with an oil content ranging from 26.622% (limequat) to 36.100% (bitter orange). A total of thirteen fatty acid components were identified from seed oils obtained by n-hexane extraction. The major fatty acids were palmitic acid (23.235-37.074%), oleic acid (19.895-30.207%), and linoleic acid (29.359-38.006%). It was determined that myristic acid was not synthesized in kumquat, pentadecanoic acid in kumquat and limequat, and alpha-linolenic acid in kumquat, lemon and limequat seeds. The saturated fatty acids (SFA) in citrus seed oil ranged from 27.951% (kumquat) to 41.976% (sweet orange), whereas the unsaturated fatty acids ranged from 58.023% (sweet orange) to 72.050% (kumquat). The quality of citrus seed oils was assessed by calculating nutrition quality indices for lipids, including PUFA/SFA ratio, atherogenicity index, thrombogenicity index, peroxidation index, unsaturation index, and calculated oxidability. Computed nutritional quality indexes revealed significant differences among species. Hierarchical cluster analysis was used to examine the classification and correlation of the oil composition in citrus seeds, revealing that the results indicated that seed oil composition largely depended on the species and could be classified into three groups accordingly. The results of the study suggest that citrus seeds could be used as healthy renewable oils for the creation of value-added products, due to their notable fatty acid composition and lipid nutritional quality.

Kaynakça

  • [1] FAOSTAT, 2025. Statistical database. https://www.fao.org/faostat/en/#data (Accessed May 10, 2025).
  • [2] Zayed, A., Badawy, M. T., Farag, M. A. 2021. Valorization and Extraction Optimization of Citrus Seeds for Food and Functional Food Applications. Food Chemistry, 355, 129609.
  • [3] Liu, W., Mao, X., Zhou, Z. 2022. Analysis of Physicochemical Properties Fatty Acid Composition and Antioxidant Activity of Seed Oil Extracted from 12 Citrus Materials. International Journal of Food Science and Technology, 57(10), 6480-6491.
  • [4] Seyyedi-Mansour, S., Carpena, M., Donn, P., Barciela, P., Perez-Vazquez, A., Echave, J., Pereira, A. G., & Prieto, M. A. 2024. Citrus Seed Waste and Circular Bioeconomy: Insights on Nutritional Profile, Health Benefits, and Application as Food Ingredient. Applied Sciences, 14(20), 9463.
  • [5] Matthaus, B., Özcan, M. M. 2012. Chemical Evaluation of Citrus Seeds, an Agro-Industrial Waste, as a New Potential Source of Vegetable Oils. Grasas Y Aceites, 63(3), 313-320.
  • [6] Anwar, F., Naseer, R., Bhanger, M. I., Ashraf, S., Talpur, F. N., Aladedunye, F. A. 2008. Physico-Chemical Characteristics of Citrus Seeds and Seed Oils from Pakistan. Journal of the American Oil Chemists' Society, 85, 321-330.
  • [7] Suri, S., Singh, A., Nema, P. K. 2022. Current Applications of Citrus Fruit Processing Waste: a Scientific Outlook. Applied Food Research, 2(1), 100050.
  • [8] Waheed, A., Mahmud, S., Saleem, M., Ahmad, T. 2009. Fatty Acid Composition of Neutral Lipid: Classes of Citrus Seed Oil. Journal of Saudi Chemical Society, 13, 269-272.
  • [9] Atolani, O., Adamu, N., Oguntoye, O. S., Zubair, M. F., Fabiyi, O. A., Oyegoke, R. A., Adeyemi, O. S., Areh, E. T., Tarigha, D. E., Kambizi, L., Olatunji, G. A. 2020. Chemical Characterization, Antioxidant, Cytotoxicity, Anti-Toxoplasma Gondii and Antimicrobial Potentials of The Citrus sinensis Seed Oil for Sustainable Cosmeceutical Production. Heliyon, 6(2), e03399.
  • [10] Al Juhaimi, F., Ozcan, M. M., Uslu, N., Ghafoor, K. 2018. The Effect of Drying Temperatures on Antioxidant Activity, Phenolic Compounds, Fatty Acid Composition and Tocopherol Contents in Citrus Seed and Oils. Journal of Food Science and Technology, 55, 190-197.
  • [11] Burnett, C. L., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, D. C., Shank, R. C., Slaga, T. J., Synder, P. W., Gill, L. J., & Heldreth, B. 2021. Safety Assessment of Citrus Fruit-Derived Ingredients as Used in Cosmetics. International Journal of Toxicology, 40, 5-38.
  • [12] Cosmetic Ingredient Review, 2014. Safety Assessment of Citrus-Derived Ingredients as Used in Cosmetics, 1620 L Street NW, Suite 1200, Washington, DC 20036-4702.
  • [13] Duru, S. 2024. Türkiye Bitkisel Yağ Dış Ticaretinin Mevcut Durumu ve Rekabet Gücünün Analizi. Gümrük ve Ticaret Dergisi, 11(35), 25-39.
  • [14] Tonguc, M., Önder, S., Erbaş, S. 2023. Variations in Seed Oil and Chemical Composition Among The Safflower Genotypes (Carthamus tinctorius L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13045-13045.
  • [15] Marquard, R. 1987. Qualitats analytic ImDienste der Ölpflanzenzüchtung. Fat Science Technology, 89, 95-99.
  • [16] Önder, S., Önder, D., Erdoğan, Ü., Waleed Khalid Khalid, S., Tonguç, M. 2025. Composition and Antioxidant Activity of Seed Oil of Date Palm (Phoenix dactylifera L.) Cultivars from Iraq. Genetic Resources and Crop Evolution, 72(4), 3939-3952.
  • [17] Chen, J., Liu, H. 2020. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. International Journal of Molecular Sciences, 21(16), 5695.
  • [18] Ulbricht, T. L. V., Southgate, D. A. T. 1991. Coronary Heart Disease: Seven Dietary Factors. The Lancet, 338(8773), 985-992.
  • [19] Kerr, B. J., Kellner, T. A., Shurson, G. C. 2015. Characteristics of Lipids and Their Feeding Value in Swine Diets. Journal of Animal Science and Biotechnology, 6, 30.
  • [20] Fatemi, S. H., Hammond, E. G. 1980. Analysis of Oleate, Linoleate and Linolenate Hydroperoxides in Oxidized Ester Mixtures. Lipids, 15(5), 379-385.
  • [21] Metsalu, T., Vilo, J. 2015. ClustVis: a Web Tool for Visualizing Clustering of Multivariate Data using Principal Component Analysis and Heatmap. Nucleic Acids Research, 43, 566-570.
  • [22] Juhaimi, F. A. L., Matthäus, B., Özcan, M. M., Ghafoor, K. 2016. The Physico-Chemical Properties of Some Citrus Seeds and Seed Oils. Zeitschrift Für Naturforschung C, 71(3-4), 79-85.
  • [23] Adubofuor, J., Akyereko, Y. G., Batsa, V., Apeku, O. J. D., Amoah, I., Diako, C. 2021. Nutrient Composition and Physical Properties of Two Orange Seed Varieties. International Journal of Food Science, 6415620.
  • [24] Özcan, M. M., Öztürk, Ö., Lemiasheuski, V. 2023. Quality Properties, Fatty Acid Composition, and Mineral Contents of Some Citrus Seeds and Oils Extracted by Solvent Extraction. Erwerbs-Obstbau, 65(1), 127-132.
  • [25] Reazai, M., Mohammadpourfard, I., Nazmara, S., Jahanbakhsh, M., Shiri, L. 2014. Physicochemical Characteristics of Citrus Seed Oils from Kerman, Iran. Journal of Lipids, 174954.
  • [26] Özcan, M. M., İnan, Ö. 2022. Physico-Chemical Properties, Fatty Acid Composition and Tocopherol Contents of Mandarin, Orange and Lemon Seed Oils. Erwerbs-Obstbau, 64(3), 445-453.
  • [27] Samancı, B., Özkaynak, E. 2003. Effect of Planting Date on Seed Yield, Oil Content and Fatty Acid Composition of Safflower (Carthamus tinctorius L.) Cultivars in The Mediterranen Region of Turkey. Journal of Agronomy and Crop Science, 189(5), 359-360.
  • [28] Pritchard, F. M., Eagles, H. A., Norton, R. M., Salisbury, P. A., Nicolas, M. 2006. Environmental Effects on Seed Composition of Victorian Canola. Australian Journal of Experimental Agriculture, 40(5), 679-685.
  • [29] Gölükcü, M., Toker, R., Tokgöz, H., Çınar, O. 2016. The Effect of Harvesting Time on Seed Oil Content and Fatty Acid Composition of Some Lemon and Mandarin Cultivars Grown in Turkey. Journal of Agricultural Sciences, 22(4), 566-575.
  • [30] Rudzińska, M., Hassanein, M. M. M., Abdel-Razek, A. G., Kmiecik, D., Siger, A., Ratusz, K. 2018. Influence of Composition on Degradation During Repeated Deep-Fat Frying of Binary and Ternary Blends of Palm, Sunflower and Soybean Oils with Health-Optimised Saturated-to-Unsaturated Fatty Acid Ratios. International Journal of Food Science & Technology, 53(4), 1021-1029.
  • [31] Nishida, C., Uauy, R. 2009. WHO Scientific Update on Health Consequences of Trans Fatty Acids: Introduction. European Journal of Clinical Nutrition, 63, 1-4.
  • [32] Ajewole, K., Adeyeye, A. 1993. Characterisation of Nigerian Citrus Seed Oils. Food Chemistry, 47(1), 77-78.
  • [33] Garrido, G., Chou, W. H., Vega, C., Goïty, L., Valdés, M. 2019. Influence of Extraction Methods on Fatty Acid Composition, Total Phenolic Content and Antioxidant Capacity of Citrus Seed Oils from The Atacama Desert, Chile. Journal of Pharmacy & Pharmacognosy Research, 7(6), 389-407.
  • [34] Hulbert, A. J., Pamplona, R., Buffenstein, R., Buttemer, W. A. 2007. Life and Death: Metabolic Rate, Membrane Composition, and Life Span of Animals. Physiological Reviews, 87(4), 1175-1213.
  • [35] Hassanien, M. M., Abdel-Razek, A. G., Rudzińska, M., Siger, A., Ratusz, K., Przybylski, R. 2014. Phytochemical Contents and Oxidative Stability of Oils from Non-Traditional Sources. European Journal of Lipid Science and Technology, 116(11), 1563-1571.
  • [36] Siger, A., Dwiecki, K., Borzyszkowski, W., Turski, M., Rudzińska, M., Nogala-Kałucka, M. 2017. Physicochemical Characteristics of The Cold-Pressed Oil Obtained from Seeds of Fagus sylvatica L. Food Chemistry, 225, 239-245.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyoteknolojisi, Bitki Bilimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Murat Mutlucan 0000-0002-6990-277X

Sercan Önder 0000-0002-8065-288X

Gönderilme Tarihi 2 Haziran 2025
Kabul Tarihi 11 Eylül 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 3

Kaynak Göster

APA Mutlucan, M., & Önder, S. (2025). Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 602-609. https://doi.org/10.19113/sdufenbed.1712467
AMA Mutlucan M, Önder S. Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2025;29(3):602-609. doi:10.19113/sdufenbed.1712467
Chicago Mutlucan, Murat, ve Sercan Önder. “Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 3 (Aralık 2025): 602-9. https://doi.org/10.19113/sdufenbed.1712467.
EndNote Mutlucan M, Önder S (01 Aralık 2025) Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 3 602–609.
IEEE M. Mutlucan ve S. Önder, “Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 3, ss. 602–609, 2025, doi: 10.19113/sdufenbed.1712467.
ISNAD Mutlucan, Murat - Önder, Sercan. “Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/3 (Aralık2025), 602-609. https://doi.org/10.19113/sdufenbed.1712467.
JAMA Mutlucan M, Önder S. Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:602–609.
MLA Mutlucan, Murat ve Sercan Önder. “Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 3, 2025, ss. 602-9, doi:10.19113/sdufenbed.1712467.
Vancouver Mutlucan M, Önder S. Citrus Seeds as Potential Vegetable Oil Resources: Oil Content and Some Quality Characteristics of Oil. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(3):602-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.