Araştırma Makalesi
BibTex RIS Kaynak Göster

Aminopropiltrimetoksisilan ile Fonksiyonelleştirilmiş Silika Nanoparçacıklarındaki Amin Gruplarının Kuantifikasyonu: Sentez, Boyut Kontrolü ve Nadir Toprak Metalleri için Sorbent Olarak Uygulaması

Yıl 2025, Cilt: 29 Sayı: 3, 665 - 673, 25.12.2025
https://doi.org/10.19113/sdufenbed.1798410

Öz

SiO₂ nanopartikülleri, tetraetil ortosilikat konsantrasyonu, amonyak ve sıcaklık gibi farklı değişken koşullar altında Stöber yöntemi kullanılarak sentezlendi ve bu sayede ayarlanabilir boyutlar elde edildi. Ardından, 3-aminopropiltrimetoksi silan (APTMS) silika yüzeyine aşılanarak SiO₂–APTMS nanopartikülleri oluşturuldu. FTIR, TGA ve XPS analizleri, aminopropil gruplarının yüzeye başarıyla aşılandığını doğruladı. Kantitatif analizler ise hem ninhidrin testi hem de termogravimetrik ölçümlerle gerçekleştirildi. Ninhidrin testi, yüzeydeki erişilebilir amin gruplarını seçici bir şekilde ortaya koyarken; TGA, 3,4 ila 9,6 molekül·nm⁻² arasında değişen aşılanma yoğunluklarıyla toplam organik yüklemeyi belirledi. Fonksiyonelleştirilmiş SiO₂–APTMS nanopartikülleri, nadir toprak elementleri (La³⁺, Nd³⁺, Dy³⁺, Er³⁺) için adsorban malzemeler olarak daha ayrıntılı biçimde incelendi. Adsorpsiyon deneyleri, 100 dakika içinde hızlı bir emilim gerçekleştiğini ve yaklaşık 200 dakikada dengeye ulaşıldığını gösterdi. Bu elementler arasında Dy³⁺ en yüksek adsorpsiyon kapasitesine (~0,63 mmol·g⁻¹) sahip olduğu gözlendi. Sonuçlar, aminopropil gruplarının başarılı şekilde yüzeye aşılandığını ve miktarının doğrulandığını gösterdi. Ayrıca, SiO₂–APTMS nanopartiküllerinin sulu çözeltilerden nadir toprak elementlerinin geri kazanımı için umut verici bir potansiyele sahip olduğu ortaya kondu.

Kaynakça

  • [1] Nanyl A.A. , Abd-Elhamid A.I. , Aly A.A., Bräse S. 2022. Recent progress in the application of silica-based nanoparticles, RSC Advances, 22, 13706-13726.
  • [2] Ghodrati M., Mousavi-Kamazani M., Bahrami Z. 2023. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces, Scientific Reports, 13, 548.
  • [3] Miller P.J, Shantz D.F. 2020. Covalently functionalized uniform amino-silica nanoparticles. Synthesis and validation of amine group accessibility and stability”, Nanoscale Adv, 2, 860-868.
  • [4] Singh V., Mandal T., Mishra S.R., Singh A., Khare P. 2024. Development of amine-functionalized fluorescent silica nanoparticles from coal fly ash as a sustainable source for nanofertilizer, Scientific Reports, 14, 3069.
  • [5] Chen Y., Zhang Y. 2011. Fluorescent quantification of amino groups on silica nanoparticle surfaces, Bioanal. Chem., 399, 2503–2509.
  • [6] Sun Y., Kunc F., Balhara V., Coleman B., Kodra O., Raza M., Chen M., Brinkmann A., Lopinski G.P., Johnson L.J. 2019. Quantification of amine functional groups on silica nanoparticles: a multi-method approach, Nanoscale Adv., 1, 1598–1607.
  • [7] Dev R.K., Yadav S.N, Magar N., Ghimire S., Koirala M., Giri R., Das A.K., Sah S.K., Gardas R.L., Bhattarai A. 2025. Recovery of Rare Earth Elements (REEs) From Different Sources of E-Waste and Their Potential Applications: A Focused Review, Geological J., 60, 1775-1798.
  • [8] Liu J., Lu X., Li Q., Xue Z., Zhang Q., Zhao Y., Wu G., Ma B., Xia W. 2025. Separation and recovery of low concentration rare earth elements from wastewater using a porous magnetic composite of carboxymethyl-β-cyclodextrin and silica, Separation and Purification Tech., 372, 133313.
  • [9] Hu Y., Castro L.C.M., Drouin E., Florek J., Kahlig H., Lariviere D., Kleitz F., Fontaine F.G. 2019. Size-selective separation of rare earth elements using functionalized mesoporous silica materials, ACS Appl. Mater. Interfaces, 11, 23681–23691.
  • [10] Ramasamy D.L., Khan S., Repo E., Sillanpää M. 2017. Synthesis of mesoporous amine and non-amine functionalized silica gels for the application of rare earth elements (REE) recovery from wastewater: understanding the role of pH, temperature, calcination, and mechanism in light REE and heavy REE separation, Chem. Eng. J., 322, 56–65.
  • [11] Vardanyan A., Guillon A., Budnyak T., Saisenbaeva G. 2022. Tailoring nanoadsorbent surfaces: separation of rare earths and late transition metals in recycling of magnet materials, Nanomaterials, 12, 974.
  • [12] Fernandes R.S., Raimundo I.M., Pimentel M.F. 2019. Revising the synthesis of Stöber silica nanoparticles: a multivariate assessment study on the effects of reaction parameters on particle size, Colloids Surf. A: Physicochem. Eng. Aspects, 577, 1–7.
  • [13] Kunc F., Balhara V., Brinkmann A., Sun Y., Leek D.M., Johnston L.J. 2018. Quantification and stability determination of surface amine groups on silica nanoparticles using solution NMR, Anal. Chem., 90, 13322–13330.
  • [14] Sun Y., Kunc F., Balhara V., Coleman B., Kodra O., Raza M., Chen M., Brinkmann A., Lopinski G.P., Johnston L.J. 2019. Quantification of amine functional groups on silica nanoparticles: a multi-method approach, Nanoscale Adv., 1, 1598–1607.
  • [15] Lu H.T. 2013. Synthesis and characterization of amino-functionalized silica nanoparticles, Colloid Journal, 75, 311–318.
  • [16] Clayton K.N., Salameh J.W., Wereley S.T., Kinzer-Ursem T.L. 2016. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry, Biomicrofluidics, 21, 054107.
  • [17] Yemin M.N., Sultana M., Siddika A., Tabassum S., Ullah S.M., Bashar M.S. 2022. Structural, optical and morphological characterization of silica nanoparticles prepared by sol–gel process, J. Turkish Chem. Soc. Sec. A: Chem., 9, 1323–1334.
  • [18] Petreanu I., Niculescu V.C., Enache S., Iacob C., Teodorescu M. 2022. Structural characterization of silica and amino-silica nanoparticles by Fourier transform infrared (FTIR) and Raman spectroscopy, Analytical Lett., 56, 390–403.
  • [19] Friedman M. 2004. Application of ninhydrin reaction for analysis of amino acids, peptides, and proteins in agricultural and biomedical sciences, J. Agric. Food Chem., 52, 385–406.
  • [20] Yu M., Qiao X., Dong X., Kang S. 2018. Effect of particle modification on the shear thickening behaviors of suspensions of silica nanoparticles in PEG, Colloid Polym. Sci., 296, 1767–1776.
  • [21] Beyler-Cigil A. 2020. Preparation, characterization, and adsorption into aqueous solutions of polyethyleneimine-coated silica nanoparticles, J. Turkish Chem. Soc. Sec. A: Chem., 7, 883–892.
  • [22] Nkinahamira F., Alsbaiee A., Wang Y., Yang X., Chen T.Y., Cao M., Feng M., Sun Q., Yu C.P. 2021. Recovery and purification of rare earth elements from wastewater and sludge using a porous magnetic composite β-cyclodextrin and silica doped with PC88A, Seperation and Purification Tech., 266, 118589.
  • [23] Ramasamy D.L. Wojtus A., Repo E., Kalliola S., Srivastava V., Sillanpää M. 2017. Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from waste water: Assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan, Chem Eng. J., 330, 1370-1379.
  • [24] Kaneko T., Nagata F., Kugimiya S., Kato K. 2018. Optimization of carboxy-functionalized mesoporous silica for the selective adsorption of dysprosium, J. Enviro. Chem. Eng. 6, 5990-5998.
  • [25] Liao C., Zhao X.R., Jiang X.Y., Teng J., Yu J.G. 2020. Hydrothermal fabrication of novel three-dimentional graphene oxide pentaerythritol composites with abundant oxygen-containing groups as efficient adsorbents, Microchem. J., 152, 104288.
  • [26] Liu E., Zheng X., Xu X., Zhang F., Liu E., Wang Y., Li C., Yan Y. 2017. Preparation of Diethylenetriamine-modified magnetic chitosan nanoparticles for adsorption of rare-earth metal ions, New. J. Chem., 41, 7739-7750.

Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals

Yıl 2025, Cilt: 29 Sayı: 3, 665 - 673, 25.12.2025
https://doi.org/10.19113/sdufenbed.1798410

Öz

SiO2 nanoparticles were prepared using the Stöber method under different variable factors, such as concentration of tetraethyl orthosilicate, ammonia, and temperature, which yielded tunable sizes, and accordingly, 3-aminopropyltrimethoxysilane (APTMS) was grafted onto the silica surface to yield SiO2-APTMS nanoparticles. FTIR, TGA, and XPS confirmed the grafting of aminopropyl groups, while quantitative analysis was carried out using both the ninhydrin assay and thermogravimetric measurements. Ninhydrin selectively revealed the presence of accessible surface amines, whereas TGA provided the total organic loading, with calculated grafting densities ranging from 3.4 to 9.6 molecules.nm⁻². The functionalized SiO₂–APTMS nanoparticles were further examined as sorbent materials for rare earth elements (La³⁺, Nd³⁺, Dy³⁺, Er³⁺). Adsorption studies demonstrated a rapid uptake within 100 min and reached an equilibrium at ~200 min. Dy³⁺ exhibited the highest capacity (~0.63 mmol·g⁻¹) among those elements. The results demonstrated the successful surface modification and quantification of aminopropyl groups, as well as the promising potential of SiO₂–APTMS nanoparticles for rare earth recovery from aqueous solutions.

Kaynakça

  • [1] Nanyl A.A. , Abd-Elhamid A.I. , Aly A.A., Bräse S. 2022. Recent progress in the application of silica-based nanoparticles, RSC Advances, 22, 13706-13726.
  • [2] Ghodrati M., Mousavi-Kamazani M., Bahrami Z. 2023. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces, Scientific Reports, 13, 548.
  • [3] Miller P.J, Shantz D.F. 2020. Covalently functionalized uniform amino-silica nanoparticles. Synthesis and validation of amine group accessibility and stability”, Nanoscale Adv, 2, 860-868.
  • [4] Singh V., Mandal T., Mishra S.R., Singh A., Khare P. 2024. Development of amine-functionalized fluorescent silica nanoparticles from coal fly ash as a sustainable source for nanofertilizer, Scientific Reports, 14, 3069.
  • [5] Chen Y., Zhang Y. 2011. Fluorescent quantification of amino groups on silica nanoparticle surfaces, Bioanal. Chem., 399, 2503–2509.
  • [6] Sun Y., Kunc F., Balhara V., Coleman B., Kodra O., Raza M., Chen M., Brinkmann A., Lopinski G.P., Johnson L.J. 2019. Quantification of amine functional groups on silica nanoparticles: a multi-method approach, Nanoscale Adv., 1, 1598–1607.
  • [7] Dev R.K., Yadav S.N, Magar N., Ghimire S., Koirala M., Giri R., Das A.K., Sah S.K., Gardas R.L., Bhattarai A. 2025. Recovery of Rare Earth Elements (REEs) From Different Sources of E-Waste and Their Potential Applications: A Focused Review, Geological J., 60, 1775-1798.
  • [8] Liu J., Lu X., Li Q., Xue Z., Zhang Q., Zhao Y., Wu G., Ma B., Xia W. 2025. Separation and recovery of low concentration rare earth elements from wastewater using a porous magnetic composite of carboxymethyl-β-cyclodextrin and silica, Separation and Purification Tech., 372, 133313.
  • [9] Hu Y., Castro L.C.M., Drouin E., Florek J., Kahlig H., Lariviere D., Kleitz F., Fontaine F.G. 2019. Size-selective separation of rare earth elements using functionalized mesoporous silica materials, ACS Appl. Mater. Interfaces, 11, 23681–23691.
  • [10] Ramasamy D.L., Khan S., Repo E., Sillanpää M. 2017. Synthesis of mesoporous amine and non-amine functionalized silica gels for the application of rare earth elements (REE) recovery from wastewater: understanding the role of pH, temperature, calcination, and mechanism in light REE and heavy REE separation, Chem. Eng. J., 322, 56–65.
  • [11] Vardanyan A., Guillon A., Budnyak T., Saisenbaeva G. 2022. Tailoring nanoadsorbent surfaces: separation of rare earths and late transition metals in recycling of magnet materials, Nanomaterials, 12, 974.
  • [12] Fernandes R.S., Raimundo I.M., Pimentel M.F. 2019. Revising the synthesis of Stöber silica nanoparticles: a multivariate assessment study on the effects of reaction parameters on particle size, Colloids Surf. A: Physicochem. Eng. Aspects, 577, 1–7.
  • [13] Kunc F., Balhara V., Brinkmann A., Sun Y., Leek D.M., Johnston L.J. 2018. Quantification and stability determination of surface amine groups on silica nanoparticles using solution NMR, Anal. Chem., 90, 13322–13330.
  • [14] Sun Y., Kunc F., Balhara V., Coleman B., Kodra O., Raza M., Chen M., Brinkmann A., Lopinski G.P., Johnston L.J. 2019. Quantification of amine functional groups on silica nanoparticles: a multi-method approach, Nanoscale Adv., 1, 1598–1607.
  • [15] Lu H.T. 2013. Synthesis and characterization of amino-functionalized silica nanoparticles, Colloid Journal, 75, 311–318.
  • [16] Clayton K.N., Salameh J.W., Wereley S.T., Kinzer-Ursem T.L. 2016. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry, Biomicrofluidics, 21, 054107.
  • [17] Yemin M.N., Sultana M., Siddika A., Tabassum S., Ullah S.M., Bashar M.S. 2022. Structural, optical and morphological characterization of silica nanoparticles prepared by sol–gel process, J. Turkish Chem. Soc. Sec. A: Chem., 9, 1323–1334.
  • [18] Petreanu I., Niculescu V.C., Enache S., Iacob C., Teodorescu M. 2022. Structural characterization of silica and amino-silica nanoparticles by Fourier transform infrared (FTIR) and Raman spectroscopy, Analytical Lett., 56, 390–403.
  • [19] Friedman M. 2004. Application of ninhydrin reaction for analysis of amino acids, peptides, and proteins in agricultural and biomedical sciences, J. Agric. Food Chem., 52, 385–406.
  • [20] Yu M., Qiao X., Dong X., Kang S. 2018. Effect of particle modification on the shear thickening behaviors of suspensions of silica nanoparticles in PEG, Colloid Polym. Sci., 296, 1767–1776.
  • [21] Beyler-Cigil A. 2020. Preparation, characterization, and adsorption into aqueous solutions of polyethyleneimine-coated silica nanoparticles, J. Turkish Chem. Soc. Sec. A: Chem., 7, 883–892.
  • [22] Nkinahamira F., Alsbaiee A., Wang Y., Yang X., Chen T.Y., Cao M., Feng M., Sun Q., Yu C.P. 2021. Recovery and purification of rare earth elements from wastewater and sludge using a porous magnetic composite β-cyclodextrin and silica doped with PC88A, Seperation and Purification Tech., 266, 118589.
  • [23] Ramasamy D.L. Wojtus A., Repo E., Kalliola S., Srivastava V., Sillanpää M. 2017. Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from waste water: Assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan, Chem Eng. J., 330, 1370-1379.
  • [24] Kaneko T., Nagata F., Kugimiya S., Kato K. 2018. Optimization of carboxy-functionalized mesoporous silica for the selective adsorption of dysprosium, J. Enviro. Chem. Eng. 6, 5990-5998.
  • [25] Liao C., Zhao X.R., Jiang X.Y., Teng J., Yu J.G. 2020. Hydrothermal fabrication of novel three-dimentional graphene oxide pentaerythritol composites with abundant oxygen-containing groups as efficient adsorbents, Microchem. J., 152, 104288.
  • [26] Liu E., Zheng X., Xu X., Zhang F., Liu E., Wang Y., Li C., Yan Y. 2017. Preparation of Diethylenetriamine-modified magnetic chitosan nanoparticles for adsorption of rare-earth metal ions, New. J. Chem., 41, 7739-7750.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnorganik Malzemeler, Nanokimya
Bölüm Araştırma Makalesi
Yazarlar

Seda Demirel Topel 0000-0002-0567-5627

Gönderilme Tarihi 6 Ekim 2025
Kabul Tarihi 18 Aralık 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 3

Kaynak Göster

APA Demirel Topel, S. (2025). Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 665-673. https://doi.org/10.19113/sdufenbed.1798410
AMA Demirel Topel S. Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2025;29(3):665-673. doi:10.19113/sdufenbed.1798410
Chicago Demirel Topel, Seda. “Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 3 (Aralık 2025): 665-73. https://doi.org/10.19113/sdufenbed.1798410.
EndNote Demirel Topel S (01 Aralık 2025) Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 3 665–673.
IEEE S. Demirel Topel, “Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 3, ss. 665–673, 2025, doi: 10.19113/sdufenbed.1798410.
ISNAD Demirel Topel, Seda. “Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/3 (Aralık2025), 665-673. https://doi.org/10.19113/sdufenbed.1798410.
JAMA Demirel Topel S. Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:665–673.
MLA Demirel Topel, Seda. “Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 3, 2025, ss. 665-73, doi:10.19113/sdufenbed.1798410.
Vancouver Demirel Topel S. Quantification of Amine Groups in Aminopropyltrimethoxysilane-Functionalized Silica Nanoparticles: Synthesis, Size Control, and Application as Sorbents for Rare Earth Metals. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(3):665-73.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.