Araştırma Makalesi
BibTex RIS Kaynak Göster

Methylene Blue Removal of Fixed-Bed Column Reactor with Pumice and nZVI-Pumice: Experimental and Modeling Study

Yıl 2019, , 574 - 581, 25.08.2019
https://doi.org/10.19113/sdufenbed.538084

Öz

Nano
zero-valent iron (nZVI) emerges as a low cost and eco-friendly adsorbent to
treat textile wastewater, which is rich in dye content. However nZVI particles
can easily agglomerate in aqueous environment due to electrostatic interaction,
decreasing their treatment efficiency. Therefore pumice, a low-cost and naturally
found porous material with lower specific surface area (2m2/gr), can
be used as support material to reduce agglomeration of nZVI. Treatment
efficiencies of pumice/nZVI packing (10:0 and 9:1 (w/w)) in column reactor for specified
initial methylene blue concentrations (25, 50, 75 and 100 mg/L) were
investigated in this study. Adsorption capacities of the adsorbents were calculated
as 2.8 and 4.2 mg/g-adsorbent, respectively at 100 mg/L initial methylene blue
concentration. Mixed bed column performed significantly better than its pumice-only
counterpart for low initial concentrations. Thomas adsorption model was applied
to  experimental results with a moderate to
high predictive power.

Kaynakça

  • [1] Paździor, K., Wrębiak, J., Klepacz-Smółka, A., Gmurek, M., Bilińska, L., Kos, L., Sójka-Ledakowicz, J., Ledakowicz, S. 2017. Influence of ozonation and biodegradation on toxicity of industrial textile wastewater. Journal of Environmental Management, 195(Pt 2), 166–173.
  • [2] Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., Pandit, A. B. 2016. A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 182, 351–366.
  • [3] Manna, S., Roy, D., Saha, P., Gopakumar, D., Thomas, S. 2017. Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346–356.
  • [4] Nassar, N. N. 2010. Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe2O3 nanoadsorbents. Seperation Science and Technology, 45(8), 1092–1103.
  • [5] Li, Y., Sun, J., Du, Q., Zhang, L., Yang, X., Wu, S., Xia ,Y., Wang, Z., Xia, L., Cao A. 2014. Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning. Carbohydrate Polymers, 102, 755–761.
  • [6] Abbasi, A. R., Karimi, M., Daasbjerg, K. 2017. Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method. Ultrasonics Sonochemistry, 37, 182–191.
  • [7] Chinoune, K., Bentaleb, K., Bouberka, Z., Nadim, A., Maschke, U. 2016. Adsorption of reactive dyes from aqueous solution by dirty bentonite. Applied Clay Science, 123, 64–75.
  • [8] Zhang, S., Li, H., Yang, Z. 2017. Controllable synthesis of WO3 with different crystalline phases and its applications on methylene blue removal from aqueous solution. Journal of Alloys Compounds, 722, 555–563.
  • [9] Chen, J., Feng, J., Yan, W. 2016. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue. Journal of Colloid Interface Science, 475, 26–35.
  • [10] Neamtu, M., Yediler, A., Siminiceanu, I., Macoveanu, M., Kettrup, A. 2004. Decolorization of disperse red 354 azo dye in water by several oxidation processes—a comparative study. Dyes and Pigments, 60(1), 61–68.
  • [11] Mohammed, G. R., Zewail, T. M., El‐Tawail, Y. A. 2014. Investigation of color removal from methylene blue containing solutions by electrocoagulation/flotation in a batch‐agitated electrochemical reactor. Environmental Progress and Sustainable Energy, 33(2), 369–377.
  • [12] Lau, Y. Y., Wong, Y. S., Teng, T. T., Morad, N., Rafatullah, M., Ong, S. A. 2015. Degradation of cationic and anionic dyes in coagulation–flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Advances, 5(43), 34206–34215.
  • [13] Huang, J., Peng, L., Zeng, G., Li, X., Zhao, Y., Liu, L., Li, F., Chai, Q. 2014. Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants. Seperation and Purification Technology, 125(7 April 2014), 83–89.
  • [14] Robinson, T., Chandran, B., Nigam, P. 2002. Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresource Technology, 85(2), 119–124.
  • [15] Dil, E. A., Ghaedi, M., Asfaram, A. 2017. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. Ultrasonics Sonochemistry, 34, 792–802.
  • [16] Ali, I., Asim, M., Khan, T. A. 2012. Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183.
  • [17] Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97(9), 1061–1085.
  • [18] Gupta, V. K. 2009. Application of low-cost adsorbents for dye removal–a review. Journal of Environmental Management, 90, 2313–2342.
  • [19] Zhang, J., Zhou, Y., Jiang, M., Li, J., Sheng, J. 2015. Removal of methylene blue from aqueous solution by adsorption on pyrophyllite. Journal of Molecular Liquids, 209, 267–271.
  • [20] Popa, N., Visa, M. 2017. The synthesis, activation and characterization of charcoal powder for the removal of methylene blue and cadmium from wastewater. Advanced Powder Technology, 28(8), 1866–1876.
  • [21] Dasgupta, J., Sikder, J., Chakraborty, S., Curcio, S., Drioli, E. 2015. Remediation of textile effluents by membrane based treatment techniques: A state of the art review. Journal of Environmental Management, 147, 55–72.
  • [22] Bayramoglu, M., Kobya, M., Can, O. T., Sozbir, M. 2004. Operating cost analysis of electroagulation of textile dye wastewater. Seperation and Purification Technology, 37(2), 117–125.
  • [23] Nawaz, M. S., Ahsan, M. 2014. Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Engineering Journal, 53(3), 717–722.
  • [24] Harman, B. I., Genisoglu, M. 2016. Synthesis and Characterization of Pumice-Supported nZVI for Removal of Copper from Waters. Advanced Material Science Engineering, 2016 (2016), 1-10.
  • [25] Han, R., Wang, Y., Zhao, X., Wang, Y., Xie, F., Cheng, J., Tang, M. 2009. Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination, 245(1-3), 284–297.
  • [26] Liu, T., Wang, Z. L., Yan, X., Zhang, B. 2014. Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composites: Pumice-supported nanoscale zero-valent iron. Chemical Engineering, 245, 34-40.
  • [27] Stefaniuk, M., Oleszczuk, P., Ok, Y. S. 2016. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 287, 618-632.
  • [28] Liu, T., Yang, Y., Wang, Z.L., Sun, Y. 2016. Remediation of arsenic (III) from aqueous solutions using improved nanoscale zero-valent iron on pumice. Chemical Engineering Journal, 288, 739-744.
  • [29] Kim, S. H., Kamala-Kannan, S., Lee, K.J., Park, Y.J., Shea P.J., Lee, W.H., Kim, H. M., Ok, B.T. 2013. Removal of Pb(II) from aqueous solution by a zeolite nanoscale zero valent iron composite. Chemical Engineering Journal, 217, 54-60.
  • [30] Ezzatahmadi, N., Ayoko, G.A., Miller, G.J., Speight, R., Yan, C., Li, J., Li, S., Xi, Y. 2017. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 312, 336-350.
  • [31] Harman, B.I. and Ibrahim, N.S. 2018. Competitive Adsorption of Heavy Metals from Water Using Pumice Supported Nanoscale Zero-Valent Iron. Special Issue of the 7th International Advances in Applied Physics and Materials Science (APMAS 2017), 134, 171-173.
  • [32] Samarghandi, M.R., Zarrabi, M., Amrane, A., Soori, M.M., Sepehr, M.N. 2013. Removal of Acid Black Dye by Pumice Stone as a low cost adsorbent; kinetic, thermodynamic and equilibrium studies. Environmental Engineering and Management Journal, 12(11)2137-2147.
  • [33] Liu, T., Wang, Z. L., Sun, Y. 2015. Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chemical Engineering Journal, 263, 55–61.
  • [34] Cifci, D.I., Meric, S. 2016. Optimization of Methylene Blue adsorption by pumice powder. Advances in Environmental Research, 5, 37-50.
  • [35] İpek, İ. Y., Kabay, N., Yüksel, M. 2013. Modeling of fixed bed column studies for removal of boron from geothermal water by selective chelating ion exchange resins. Desalination, 310, 151–157.
  • [36] Recepoğlu, Y. K., Kabay, N., Ipek, I. Y., Arda, M., Yüksel, M., Yoshizuka, K., Nishihama, S. 2018. Packed bed column dynamic study for boron removal from geothermal brine by a chelating fiber and breakthrough curve analysis by using mathematical models. Desalination, 437, 1–6.
  • [37] Arrigo, I., Catalfamo, P., Cavallari, L., Dipasquale, S., 2007. Use of zeolitized pumice waste as a water softening agent. Journal of Hazardous Materials, 147, 513–517.
  • [38] Chuan, X.Y., Hirano, M., Inagaki, M., 2004. Preparation and photocatalytic performance of anatase-mounted natural porous silica, pumice, by hydrolysis under hydrothermal conditions. Applied Catalysis B: Environmental, 51(4), 255-260.
  • [39] Ersoy, B., Sariisik, A., Dikmen, S., Sariisik, G., 2010. Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technology, 197(1-2), pp.129-135.
  • [40] Zhang, X., Lin, S., Chen, Z., Megharaj, M., Naidu, R., 2011. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Research, 45, 3481-3488.
  • [41] Sawafta, R., Shahwan, T. 2019. A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions. Journal of Molecular Liquids, 273, 274–281.
  • [42] Thomas, H. C. 1944. Heterogeneous Ion Exchange in a Flowing System. Journal of the American Chemical Society, 66(10), 1664–1666.
  • [43] Gong, J. L., Zhang, Y. L., Jiang, Y., Zeng, G. M., Cui, Z. H., Liu, K., Deng, C. H., Niu, Q. Y., Deng, J. H., Huan, S. Y. 2015. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column. Applied Surface Science, 330, 148–157.
  • [44] Ding, Z., Hu, X., Zimmerman, A. R., Gao, B. 2014. Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass. Bioresource Technology, 167, 569–573.
  • [45] Germi, T. A., Nematollahzadeh, A. 2016. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. Journal of Colloid and Interface Science, 470, 172–182.
  • [46] Bharti, V., Vikrant, K., Goswami, M., Tiwari, H., Sonwani, R.K., Lee, J., Tsang, D.C., Kim, K.H., Saeed, M., Kumar, S., Rai, B.N., 2019. Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental research, 171, 356-364.
  • [47] Tan, K. B., Abdullah, A. Z., Horri, B. A., Salamatinia, B. 2016. Adsorption mechanism of microcrystalline cellulose as green adsorbent for the removal of cationic methylene blue dye. Chemical Society of Pakistan, 38, 651-664.
  • [48] Gürses, A., Karaca, S., Doğar, Ç., Bayrak, R., Açıkyıldız, M., Yalçın, M. 2004. Determination of adsorptive properties of clay/water system: methylene blue sorption. Journal of Colloid and Interface Science, 269 (2), 310–314.
  • [49] Aroguz, A. Z., Gulen, J., Evers, R. H., 2008. Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresource, 99 (6), 1503-1508.
  • [50] Ayad, M. M., El-Nasr, A. A., Stejskal, J. 2012. Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. Journal of Industrial and Engineering Chemistry, 18 (6), 1964-1969.
  • [51] Sheng, L., Zhang, Y., Tang, F., Liu, S. 2018. Mesoporous/microporous silica materials: Preparation from natural sands and highly efficient fixed-bed adsorption of methylene blue in wastewater. Microporous and Mesoporous Materials, 257, 9-18.
  • [52] Miraboutalebi, S. M., Nikouzad, S. K., Peydayesh, M., Allahgholi, N., Vafajoo, L., McKay, G. 2017. Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Safety and Environmental Protection, 106, 191-202.
  • [53] Shaibu, S. E., Adekola, F. A., Adegoke, H. I., Ayanda, O. S. 2014. A Comparative Study of the Adsorption of Methylene Blue onto Synthesized Nanoscale Zero-Valent Iron-Bamboo and Manganese-Bamboo Composites. Materials, 7 (6), 4493-4507.
  • [54] Lin, J., Weng, X., Jin, X., Megharaj, M., Naidu, R., Chen, Z. 2015. Reactivity of iron-based nanoparticles by green synthesis under 3 various atmospheres and their removal mechanism of methylene blue. Royal Society of Chemistry, 5, 70874-70882.
  • [55] Han, R., Wang, Y., Zou, W., Wang, Y., Shi, J. 2007. Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. Journal of Hazardous Materials, 145 (1-2), 331–335.
  • [56] Sawafta, R., Shahwan, T. 2019. A Comparative Study of the Removal of Methylene Blue by Iron Nanoparticles from Water and Water-Ethanol Solutions. Journal of Molecular Liquids, 273, 274-281.
  • [57] Nguyena, C. H., Juang, R. S. 2019. Efficient removal of methylene blue dye by a hybrid adsorption– photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. Journal of Industrial and Engineering Chemistry, 76, 296–309.
  • [58] Hammed, A. K., Dewayanto, N., Du, D., Rahim, M. H. A., Nordin, M. R. 2016. Novel modified ZSM-5 as an efficient adsorbent for methylene blue removal. Journal of Environmental Chemical Engineering, 4 (3), 2607-2616.

Pomza ve nSDD-Pomza ile Sabit Yataklı Kolon Reaktörde Metilen Mavisi Giderimi: Deneysel ve Modelleme Çalışması

Yıl 2019, , 574 - 581, 25.08.2019
https://doi.org/10.19113/sdufenbed.538084

Öz

Nano
sıfır değerlikli demir (nSDD) yüksek renk konsantrasyonlarına sahip tekstil
atıksularının arıtımında ekonomik ve çevre dostu bir adsorban olarak ortaya
çıkmaktadır. Ancak nSDD partikülleri sulu çözeltilerde elektrostatik
etkileşimler sebebiyle kolayca topaklaşmakta ve bu da arıtma veriminin
düşmesine neden olmaktadır. Dolayısıyla düşük maliyetli, doğal poröz yapıda ve
ortalama 2m2/gr spesifik yüzey alanına sahip pomza, nSDD
topaklaşmasını önleyici bir malzeme olarak kullanılabilir. Bu çalışmada sadece
pomza ve pomza-nSDD (ağırlıkça 9:1) karışımının kullanıldığı kolon reaktörde
25, 50, 75 ve 100 mg/L metilen mavisi konsantrasyonları için arıtma verimleri
incelenmiştir. Pomzanın ve pomza-nSDD karışımının 100 mg/L metilen mavisi
deneyindeki toplam kapasiteleri sırasıyla 2,8 ve 4,2 mg/g-adsorban olarak bulunmuştur.
Özellikle düşük konsantrasyonlarda, pomza-nSDD karışımının arıtma performansını
önemli ölçüde arttırdığı görülmüştür. Thomas modeli deneysel verilere
uygulanmış ve modelin öngörü gücünün düşük konsantrasyonda yüksekken, yüksek
konsantrasyonlarda ortalama olduğu kanısına varılmıştır.

Kaynakça

  • [1] Paździor, K., Wrębiak, J., Klepacz-Smółka, A., Gmurek, M., Bilińska, L., Kos, L., Sójka-Ledakowicz, J., Ledakowicz, S. 2017. Influence of ozonation and biodegradation on toxicity of industrial textile wastewater. Journal of Environmental Management, 195(Pt 2), 166–173.
  • [2] Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., Pandit, A. B. 2016. A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 182, 351–366.
  • [3] Manna, S., Roy, D., Saha, P., Gopakumar, D., Thomas, S. 2017. Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346–356.
  • [4] Nassar, N. N. 2010. Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe2O3 nanoadsorbents. Seperation Science and Technology, 45(8), 1092–1103.
  • [5] Li, Y., Sun, J., Du, Q., Zhang, L., Yang, X., Wu, S., Xia ,Y., Wang, Z., Xia, L., Cao A. 2014. Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning. Carbohydrate Polymers, 102, 755–761.
  • [6] Abbasi, A. R., Karimi, M., Daasbjerg, K. 2017. Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method. Ultrasonics Sonochemistry, 37, 182–191.
  • [7] Chinoune, K., Bentaleb, K., Bouberka, Z., Nadim, A., Maschke, U. 2016. Adsorption of reactive dyes from aqueous solution by dirty bentonite. Applied Clay Science, 123, 64–75.
  • [8] Zhang, S., Li, H., Yang, Z. 2017. Controllable synthesis of WO3 with different crystalline phases and its applications on methylene blue removal from aqueous solution. Journal of Alloys Compounds, 722, 555–563.
  • [9] Chen, J., Feng, J., Yan, W. 2016. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue. Journal of Colloid Interface Science, 475, 26–35.
  • [10] Neamtu, M., Yediler, A., Siminiceanu, I., Macoveanu, M., Kettrup, A. 2004. Decolorization of disperse red 354 azo dye in water by several oxidation processes—a comparative study. Dyes and Pigments, 60(1), 61–68.
  • [11] Mohammed, G. R., Zewail, T. M., El‐Tawail, Y. A. 2014. Investigation of color removal from methylene blue containing solutions by electrocoagulation/flotation in a batch‐agitated electrochemical reactor. Environmental Progress and Sustainable Energy, 33(2), 369–377.
  • [12] Lau, Y. Y., Wong, Y. S., Teng, T. T., Morad, N., Rafatullah, M., Ong, S. A. 2015. Degradation of cationic and anionic dyes in coagulation–flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Advances, 5(43), 34206–34215.
  • [13] Huang, J., Peng, L., Zeng, G., Li, X., Zhao, Y., Liu, L., Li, F., Chai, Q. 2014. Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants. Seperation and Purification Technology, 125(7 April 2014), 83–89.
  • [14] Robinson, T., Chandran, B., Nigam, P. 2002. Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresource Technology, 85(2), 119–124.
  • [15] Dil, E. A., Ghaedi, M., Asfaram, A. 2017. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: application of ultrasound wave, optimization and modeling. Ultrasonics Sonochemistry, 34, 792–802.
  • [16] Ali, I., Asim, M., Khan, T. A. 2012. Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183.
  • [17] Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97(9), 1061–1085.
  • [18] Gupta, V. K. 2009. Application of low-cost adsorbents for dye removal–a review. Journal of Environmental Management, 90, 2313–2342.
  • [19] Zhang, J., Zhou, Y., Jiang, M., Li, J., Sheng, J. 2015. Removal of methylene blue from aqueous solution by adsorption on pyrophyllite. Journal of Molecular Liquids, 209, 267–271.
  • [20] Popa, N., Visa, M. 2017. The synthesis, activation and characterization of charcoal powder for the removal of methylene blue and cadmium from wastewater. Advanced Powder Technology, 28(8), 1866–1876.
  • [21] Dasgupta, J., Sikder, J., Chakraborty, S., Curcio, S., Drioli, E. 2015. Remediation of textile effluents by membrane based treatment techniques: A state of the art review. Journal of Environmental Management, 147, 55–72.
  • [22] Bayramoglu, M., Kobya, M., Can, O. T., Sozbir, M. 2004. Operating cost analysis of electroagulation of textile dye wastewater. Seperation and Purification Technology, 37(2), 117–125.
  • [23] Nawaz, M. S., Ahsan, M. 2014. Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Engineering Journal, 53(3), 717–722.
  • [24] Harman, B. I., Genisoglu, M. 2016. Synthesis and Characterization of Pumice-Supported nZVI for Removal of Copper from Waters. Advanced Material Science Engineering, 2016 (2016), 1-10.
  • [25] Han, R., Wang, Y., Zhao, X., Wang, Y., Xie, F., Cheng, J., Tang, M. 2009. Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination, 245(1-3), 284–297.
  • [26] Liu, T., Wang, Z. L., Yan, X., Zhang, B. 2014. Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composites: Pumice-supported nanoscale zero-valent iron. Chemical Engineering, 245, 34-40.
  • [27] Stefaniuk, M., Oleszczuk, P., Ok, Y. S. 2016. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 287, 618-632.
  • [28] Liu, T., Yang, Y., Wang, Z.L., Sun, Y. 2016. Remediation of arsenic (III) from aqueous solutions using improved nanoscale zero-valent iron on pumice. Chemical Engineering Journal, 288, 739-744.
  • [29] Kim, S. H., Kamala-Kannan, S., Lee, K.J., Park, Y.J., Shea P.J., Lee, W.H., Kim, H. M., Ok, B.T. 2013. Removal of Pb(II) from aqueous solution by a zeolite nanoscale zero valent iron composite. Chemical Engineering Journal, 217, 54-60.
  • [30] Ezzatahmadi, N., Ayoko, G.A., Miller, G.J., Speight, R., Yan, C., Li, J., Li, S., Xi, Y. 2017. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. Chemical Engineering Journal, 312, 336-350.
  • [31] Harman, B.I. and Ibrahim, N.S. 2018. Competitive Adsorption of Heavy Metals from Water Using Pumice Supported Nanoscale Zero-Valent Iron. Special Issue of the 7th International Advances in Applied Physics and Materials Science (APMAS 2017), 134, 171-173.
  • [32] Samarghandi, M.R., Zarrabi, M., Amrane, A., Soori, M.M., Sepehr, M.N. 2013. Removal of Acid Black Dye by Pumice Stone as a low cost adsorbent; kinetic, thermodynamic and equilibrium studies. Environmental Engineering and Management Journal, 12(11)2137-2147.
  • [33] Liu, T., Wang, Z. L., Sun, Y. 2015. Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chemical Engineering Journal, 263, 55–61.
  • [34] Cifci, D.I., Meric, S. 2016. Optimization of Methylene Blue adsorption by pumice powder. Advances in Environmental Research, 5, 37-50.
  • [35] İpek, İ. Y., Kabay, N., Yüksel, M. 2013. Modeling of fixed bed column studies for removal of boron from geothermal water by selective chelating ion exchange resins. Desalination, 310, 151–157.
  • [36] Recepoğlu, Y. K., Kabay, N., Ipek, I. Y., Arda, M., Yüksel, M., Yoshizuka, K., Nishihama, S. 2018. Packed bed column dynamic study for boron removal from geothermal brine by a chelating fiber and breakthrough curve analysis by using mathematical models. Desalination, 437, 1–6.
  • [37] Arrigo, I., Catalfamo, P., Cavallari, L., Dipasquale, S., 2007. Use of zeolitized pumice waste as a water softening agent. Journal of Hazardous Materials, 147, 513–517.
  • [38] Chuan, X.Y., Hirano, M., Inagaki, M., 2004. Preparation and photocatalytic performance of anatase-mounted natural porous silica, pumice, by hydrolysis under hydrothermal conditions. Applied Catalysis B: Environmental, 51(4), 255-260.
  • [39] Ersoy, B., Sariisik, A., Dikmen, S., Sariisik, G., 2010. Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technology, 197(1-2), pp.129-135.
  • [40] Zhang, X., Lin, S., Chen, Z., Megharaj, M., Naidu, R., 2011. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Research, 45, 3481-3488.
  • [41] Sawafta, R., Shahwan, T. 2019. A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions. Journal of Molecular Liquids, 273, 274–281.
  • [42] Thomas, H. C. 1944. Heterogeneous Ion Exchange in a Flowing System. Journal of the American Chemical Society, 66(10), 1664–1666.
  • [43] Gong, J. L., Zhang, Y. L., Jiang, Y., Zeng, G. M., Cui, Z. H., Liu, K., Deng, C. H., Niu, Q. Y., Deng, J. H., Huan, S. Y. 2015. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column. Applied Surface Science, 330, 148–157.
  • [44] Ding, Z., Hu, X., Zimmerman, A. R., Gao, B. 2014. Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass. Bioresource Technology, 167, 569–573.
  • [45] Germi, T. A., Nematollahzadeh, A. 2016. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. Journal of Colloid and Interface Science, 470, 172–182.
  • [46] Bharti, V., Vikrant, K., Goswami, M., Tiwari, H., Sonwani, R.K., Lee, J., Tsang, D.C., Kim, K.H., Saeed, M., Kumar, S., Rai, B.N., 2019. Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental research, 171, 356-364.
  • [47] Tan, K. B., Abdullah, A. Z., Horri, B. A., Salamatinia, B. 2016. Adsorption mechanism of microcrystalline cellulose as green adsorbent for the removal of cationic methylene blue dye. Chemical Society of Pakistan, 38, 651-664.
  • [48] Gürses, A., Karaca, S., Doğar, Ç., Bayrak, R., Açıkyıldız, M., Yalçın, M. 2004. Determination of adsorptive properties of clay/water system: methylene blue sorption. Journal of Colloid and Interface Science, 269 (2), 310–314.
  • [49] Aroguz, A. Z., Gulen, J., Evers, R. H., 2008. Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresource, 99 (6), 1503-1508.
  • [50] Ayad, M. M., El-Nasr, A. A., Stejskal, J. 2012. Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. Journal of Industrial and Engineering Chemistry, 18 (6), 1964-1969.
  • [51] Sheng, L., Zhang, Y., Tang, F., Liu, S. 2018. Mesoporous/microporous silica materials: Preparation from natural sands and highly efficient fixed-bed adsorption of methylene blue in wastewater. Microporous and Mesoporous Materials, 257, 9-18.
  • [52] Miraboutalebi, S. M., Nikouzad, S. K., Peydayesh, M., Allahgholi, N., Vafajoo, L., McKay, G. 2017. Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Safety and Environmental Protection, 106, 191-202.
  • [53] Shaibu, S. E., Adekola, F. A., Adegoke, H. I., Ayanda, O. S. 2014. A Comparative Study of the Adsorption of Methylene Blue onto Synthesized Nanoscale Zero-Valent Iron-Bamboo and Manganese-Bamboo Composites. Materials, 7 (6), 4493-4507.
  • [54] Lin, J., Weng, X., Jin, X., Megharaj, M., Naidu, R., Chen, Z. 2015. Reactivity of iron-based nanoparticles by green synthesis under 3 various atmospheres and their removal mechanism of methylene blue. Royal Society of Chemistry, 5, 70874-70882.
  • [55] Han, R., Wang, Y., Zou, W., Wang, Y., Shi, J. 2007. Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. Journal of Hazardous Materials, 145 (1-2), 331–335.
  • [56] Sawafta, R., Shahwan, T. 2019. A Comparative Study of the Removal of Methylene Blue by Iron Nanoparticles from Water and Water-Ethanol Solutions. Journal of Molecular Liquids, 273, 274-281.
  • [57] Nguyena, C. H., Juang, R. S. 2019. Efficient removal of methylene blue dye by a hybrid adsorption– photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. Journal of Industrial and Engineering Chemistry, 76, 296–309.
  • [58] Hammed, A. K., Dewayanto, N., Du, D., Rahim, M. H. A., Nordin, M. R. 2016. Novel modified ZSM-5 as an efficient adsorbent for methylene blue removal. Journal of Environmental Chemical Engineering, 4 (3), 2607-2616.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mesut Genişoğlu 0000-0002-4618-279X

Ayşegül Yağmur Gören 0000-0003-1114-6059

Esin Balcı Bu kişi benim 0000-0002-3269-1366

Yaşar Kemal Recepoğlu 0000-0001-6646-0358

Hatice Eser Ökten 0000-0001-7511-940X

Yayımlanma Tarihi 25 Ağustos 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Genişoğlu, M., Gören, A. Y., Balcı, E., Recepoğlu, Y. K., vd. (2019). Methylene Blue Removal of Fixed-Bed Column Reactor with Pumice and nZVI-Pumice: Experimental and Modeling Study. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 574-581. https://doi.org/10.19113/sdufenbed.538084
AMA Genişoğlu M, Gören AY, Balcı E, Recepoğlu YK, Ökten HE. Methylene Blue Removal of Fixed-Bed Column Reactor with Pumice and nZVI-Pumice: Experimental and Modeling Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2019;23(2):574-581. doi:10.19113/sdufenbed.538084
Chicago Genişoğlu, Mesut, Ayşegül Yağmur Gören, Esin Balcı, Yaşar Kemal Recepoğlu, ve Hatice Eser Ökten. “Methylene Blue Removal of Fixed-Bed Column Reactor With Pumice and NZVI-Pumice: Experimental and Modeling Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 2 (Ağustos 2019): 574-81. https://doi.org/10.19113/sdufenbed.538084.
EndNote Genişoğlu M, Gören AY, Balcı E, Recepoğlu YK, Ökten HE (01 Ağustos 2019) Methylene Blue Removal of Fixed-Bed Column Reactor with Pumice and nZVI-Pumice: Experimental and Modeling Study. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 2 574–581.
IEEE M. Genişoğlu, A. Y. Gören, E. Balcı, Y. K. Recepoğlu, ve H. E. Ökten, “Methylene Blue Removal of Fixed-Bed Column Reactor with Pumice and nZVI-Pumice: Experimental and Modeling Study”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 23, sy. 2, ss. 574–581, 2019, doi: 10.19113/sdufenbed.538084.
ISNAD Genişoğlu, Mesut vd. “Methylene Blue Removal of Fixed-Bed Column Reactor With Pumice and NZVI-Pumice: Experimental and Modeling Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/2 (Ağustos 2019), 574-581. https://doi.org/10.19113/sdufenbed.538084.
JAMA Genişoğlu M, Gören AY, Balcı E, Recepoğlu YK, Ökten HE. Methylene Blue Removal of Fixed-Bed Column Reactor with Pumice and nZVI-Pumice: Experimental and Modeling Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:574–581.
MLA Genişoğlu, Mesut vd. “Methylene Blue Removal of Fixed-Bed Column Reactor With Pumice and NZVI-Pumice: Experimental and Modeling Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 2, 2019, ss. 574-81, doi:10.19113/sdufenbed.538084.
Vancouver Genişoğlu M, Gören AY, Balcı E, Recepoğlu YK, Ökten HE. Methylene Blue Removal of Fixed-Bed Column Reactor with Pumice and nZVI-Pumice: Experimental and Modeling Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(2):574-81.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.