Araştırma Makalesi
BibTex RIS Kaynak Göster

The Usage of Fe3O4 Nanoparticles Synthesized by Hydrothermal Method for Nitrate Removal from Water

Yıl 2020, , 323 - 332, 26.08.2020
https://doi.org/10.19113/sdufenbed.641298

Öz

In this study, the efficiency of Fe3O4 nanoparticle synthesized by hydrothermal method on nitrate removal, the effect of environmental conditions, recovery and reusability properties of nanoparticle were investigated. Surface morphology, element content, crystal structure, specific surface area and functional groups of the magnetic nanoparticle were elucidated by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR) analysis. Nitrate removal efficiency was achieved as 90.26% for optimum conditions (30 min contact time, pH 6.9 value, 1.2 g/L adsorbent dose and 100 mg/L initial nitrate concentration) as a result of batch adsorption studies. Desorption studies were performed with 0.1 M NaCl, NaOH, HNO3 and HCl and favorable results were obtained with NaCl. Nitrate adsorption with Fe3O4 was found to be more compatible with Langmuir isotherm model and maximum adsorption capacity was determined as 86.96 mg/g.

Kaynakça

  • [1] Amin, Z.A. 2007. The water problem. Daily Star, October 8.
  • [2] Mohsenipour, M., Shahid, S., Ebrahimi, K. 2014. Removal Techniques of Nitrate from Water. Asian Journal of Chemistry, 26(23), 7881-7886.
  • [3] Liu, A., Ming, J., Ankumah, R.O. 2005. Nitrate contamination in private wells in rural Alabama, United States. Science of the Total Environment, 346(1-3), 112-120.
  • [4] Kapoor, A., Viraraghavan, T. 1997. Nitrate removal from drinking water. Journal of Environmental Engineering, 123(4), 371-380.
  • [5] Bhatnagar, A., Ji, M., Choi, Y., Jung, W., Lee, S., Kim, S., Lee, G., Suk, H., Kim, H., Min, B., Kim, S-H., Jeon, B., Kang, J. 2008. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Separation Science and Technology, 43(4), 886-907.
  • [6] Kite‐Powell, A.C., A.K. Harding. 2006. Nitrate Contamination in Oregon Well Water: Geologic Variability And The Public's Perception 1. JAWRA Journal of the American Water Resources Association, 42(4), 975-987.
  • [7] Hamlin, H. J., Moore, B. C., Edwards, T. M., Larkin, I. L., Boggs, A., High, W. J., Guillette Jr, L. J. 2008. Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture. Aquaculture, 281(1-4), 118-125.
  • [8] Fenton, O., Richards, K. G., Kirwan, L., Khalil, M. I., Healy, M. G. 2009. Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland. Journal of Environmental Management, 90(10), 3135-3146.
  • [9] Hekmatzadeh, A. A., Karimi-Jashani, A., Talebbeydokhti, N., Kløve, B. 2012. Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments. Desalination, 284, 22-31.
  • [10] Hwang, Y.-H., Kim, D.-G., Shin, H.-S. 2011. Mechanism study of nitrate reduction by nano zero valent iron. Journal of Hazardous Materials, 185(2-3), 1513-1521.
  • [11] Malberg, J., Savage, E., Osteryoung. J. 1978. Nitrates in drinking water and the early onset of hypertension. Environmental Pollution, 15(2), 155-160.
  • [12] Seffner, W. 1995. Natural water contents and endemic goiter--a review. Zentralblatt fur Hygiene und Umweltmedizin= International Journal of Hygiene and Environmental Medicine, 196(5), 381-398.
  • [13] Van Maanen, J. M., van Dijk, A., Mulder, K., de Baets, M. H., Menheere, P. C., van der Heide, D., Kleinjans, J. C. 1994. Consumption of drinking water with high nitrate levels causes hypertrophy of the thyroid. Toxicology Letters, 72(1-3), 365-374.
  • [14] Rodríguez-Maroto, J. M., García-Herruzo, F., García-Rubio, A., Gómez-Lahoz, C., Vereda-Alonso, C. 2009. Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere, 74(6), 804-809.
  • [15] Shah, P.M., Raghimi, M., Khademi, M. 2005. The environmental impact of urban development on nitrate contamination of groundwater resources in Gorgan district, NE Iran, 48-55.
  • [16] World Health Organization. 2008. Guidelines for drinking-water quality: Third Edition Incorporating 1st and 2nd Addenda, WHO Library Cataloguing-in-Publication Data, Geneva, Switzerland, 668s.
  • [17] Titov, V.Y., Petrenko, Y.M. 2005. Proposed mechanism of nitrite-induced methemoglobinemia. Biochemistry (Moscow). 70(4), 473-483.
  • [18] United States Environmental Protection Agency. 2002. Edition of the drinking water standards and health advisories. EPA 822-R-02-038. Office of Water, Washington DC.
  • [19] Shrimali, M., Singh, K. 2001. New methods of nitrate removal from water. Environmental Pollution, 112(3), 351-359.
  • [20] Kalaruban, M., Loganathan, P., Shim, W. G., Kandasamy, J., Naidu, G., Nguyen, T. V., Vigneswaran, S. 2016. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies. Separation and Purification Technology, 158, 62-70.
  • [21] Samatya, S., Kabay, N., Yüksel, Ü., Arda, M., Yüksel, M. 2006. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. Reactive and Functional Polymers, 66(11), 1206-1214.
  • [22] Schoeman, J., Steyn, A. 2003. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 155(1), 15-26.
  • [23] Luo, J., Song, G., Liu, J., Qian, G., Xu, Z. P. 2014. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface. Journal of Colloid and Interface Science, 435, 21-25.
  • [24] Li, M., Feng, C., Zhang, Z., Yang, S., Sugiura, N. 2010. Treatment of nitrate contaminated water using an electrochemical method. Bioresource Technology, 101(16), 6553-6557.
  • [25] Cheng, I. F., Muftikian, R., Fernando, Q., Korte, N. 1997. Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 35(11), 2689-2695.
  • [26] Chen, Y.-M., Li, C.-W., Chen, S.-S. 2005. Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere, 59(6), 753-759.
  • [27] Kumar, M., Chakraborty, S. 2006. Chemical denitrification of water by zero-valent magnesium powder. Journal of Hazardous Materials, 135(1-3), 112-121.
  • [28] Oh, S. Y., Seo, Y. D., Kim, B., Kim, I. Y., Cha, D. K. 2016. Microbial reduction of nitrate in the presence of zero-valent iron and biochar. Bioresource Technology, 200, 891-896.
  • [29] Shi, J., Yi, S., He, H., Long, C., Li, A. 2013. Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and NO3. Chemical Engineering Journal, 230, 166-171.
  • [30] Mohammadi, A. A., Alinejad, A., Kamarehie, B., Javan, S., Ghaderpoury, A., Ahmadpour, M., Ghaderpoori, M. 2017. Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions. International Journal of Environmental Science and Technology, 14(9), 1959-1968.
  • [31] Bhatnagar, A., Kumar, E.,. Sillanpää, M. 2010. Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chemical Engineering Journal, 163(3), 317-323.
  • [32] Cengeloglu, Y., Tor, A., Ersoz, M., Arslan, G. 2006. Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51(3), 374-378.
  • [33] Islam, M., Mishra, P.C., Patel, R. 2010. Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. Journal of Environmental Management, 91(9), 1883-1891.
  • [34] Tuutijärvi, T., Lu, J., Sillanpää, M., Chen, G. 2009. As (V) adsorption on maghemite nanoparticles. Journal of Hazardous Materials, 166(2-3), 1415-1420.
  • [35] Poursaberi, T., Karimi, M., Hassanisadi, M., Sereshti, H. 2013. Magnetic removal of nitrate ions from aqueous solution using amino-silica coated magnetic nanoparticles modified by oxovanadium (IV) porphyrin. Journal of Porphyrins and Phthalocyanines, 17(05), 359-366.
  • [36] Hadei, M., Aalipour, M., Mengli Zadeh, N., Pourzamani, H. 2016. Ethylbenzene removal from aqueous solutions by nano magnetic particles. Archives of Hygiene Sciences, 5(1), 22-32.
  • [37] Feng, Y., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., Yan, M. 2010. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 162(2), 487-494.
  • [38] Yılmaz, E. 2015. Manyetik nanokompozitlerin sentezi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 81s, Konya.
  • [39] Mahdavi, M., Ahmad, M. B., Haron, M. J., Gharayebi, Y., Shameli, K., Nadi, B. 2013. Fabrication and characterization of SiO 2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead (II) removal from aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 23(3), 599-607.
  • [40] El Ghandoor, H., Zidan, H. M., Khalil, M. M., Ismail, M. I. M. 2012. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci, 7(6), 5734-5745.
  • [41] Kumari, M., Pittman Jr, C.U., Mohan, D. 2015. Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science, 442, 120-132.
  • [42] Yuwei, C., Jianlong, W. 2011. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal. Chemical Engineering Journal, 168(1), 286-292.
  • [43] Malkoc, E., Nuhoglu, Y. 2006. Fixed bed studies for the sorption of chromium (VI) onto tea factory waste. Chemical Engineering Science, 61(13), 4363-4372.
  • [44] Banerjee, S.S., Chen, D.-H. 2007. Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. Journal of Hazardous Materials, 147(3), 792-799.
  • [45] Panneerselvam, P., Morad, N., Tan, K.A. 2011. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. Journal of Hazardous Materials, 186(1), 160-168.
  • [46] Chen, K., He, J., Li, Y., Cai, X., Zhang, K., Liu, T., Liu, J. 2017. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. Journal of Colloid and Interface Science, 494, 307-316.
  • [47] Rudolph, M., Erler, J., Peuker, U.A. 2012. A TGA–FTIR perspective of fatty acid adsorbed on magnetite nanoparticles–Decomposition steps and magnetite reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 397, 16-23.
  • [48] Ahmaruzzaman, M. 2008. Adsorption of phenolic compounds on low-cost adsorbents: a review. Advances in Colloid and Interface Science, 143(1-2), 48-67.
  • [49] Kamarehie, B., Aghaali, E., Musavi, S. A., Hashemi, S. Y., Jafari, A. 2018. Nitrate removal from aqueous solutions using granular activated carbon modified with iron nanoparticles. International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics, 31(4), 554-563.
  • [50] Ghasemi, E., Sillanpää, M. 2015. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples. Journal of Separation Science, 38(1), 164-169.
  • [51] Xu, T., Cai, Y., O'Shea, K.E. 2007. Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environmental Science & Technology, 41(15), 5471-5477.
  • [52] Sarı, A., Tuzen, M., Soylak, M. 2007. Adsorption of Pb (II) and Cr (III) from aqueous solution on Celtek clay. Journal of Hazardous Materials, 144(1-2), 41-46.
  • [53] Rao, R.A., Rehman, F. 2010. Adsorption studies on fruits of Gular (Ficus glomerata): removal of Cr (VI) from synthetic wastewater. Journal of Hazardous Materials, 181(1-3), 405-412.
  • [54] Öztürk, N., Bektaş, T.E.l. 2004. Nitrate removal from aqueous solution by adsorption onto various materials. Journal of Hazardous Materials, 112(1-2), 155-162.
  • [55] Demiral, H., Gündüzoğlu, G. 2010. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource Technology, 101(6), 1675-1680.
  • [56] Hu, Q., Chen, N., Feng, C., Hu, W. 2015. Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex. Applied Surface Science, 347, 1-9.
  • [57] Heidari, S., Basiri, H., Nourmoradi, H., Kamareei, B. 2016. Hexadecyl trimethyl ammonium bromide-modified montmorillonite as a low-cost sorbent for the removal of methyl red from liquid-medium. International Journal of Engineering, 29(1), 60-67.
  • [58] Dai, Y., Hu, Y., Jiang, B., Zou, J., Tian, G., Fu, H. 2016. Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. Journal of Hazardous Materials, 309, 249-258.
  • [59] Mohammadi, A. S., Sardar, M. 2013. The removal of penicillin G from aqueous solutions using chestnut shell modified with H2SO4: Isotherm and kinetic study. Iranian Journal of Health and Environment, 5(4), 497-508.
  • [60] Dewage, N. B., Liyanage, A. S., Pittman Jr, C. U., Mohan, D., Mlsna, T. 2018. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresource Technology, 263, 258-265.
  • [61] Kheshti, Z., Ghajar, K. A., Altaee, A., Kheshti, M. R. 2019. High-Gradient Magnetic Separator (HGMS) combined with adsorption for nitrate removal from aqueous solution. Separation and Purification Technology, 212, 650-659.
  • [62] Mukhopadhyay, R., Adhikari, T., Sarkar, B., Barman, A., Paul, R., Patra, A. K., Kumar, P. 2019. Fe-exchanged nano-bentonite outperforms Fe3O4 nanoparticles in removing nitrate and bicarbonate from wastewater. Journal of Hazardous Materials, 376, 141-152.
  • [63] Khatamian, M., Divband, B., Shahi, R. 2019. Ultrasound assisted co-precipitation synthesis of Fe3O4/bentonite nanocomposite: Performance for nitrate, BOD and COD water treatment. Journal of Water Process Engineering, 31, 100870. [64] Song, W., Gao, B., Xu, X., Wang, F., Xue, N., Sun, S., Jia, R. 2016. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. Journal of Hazardous Materials, 304, 280-290.

Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı

Yıl 2020, , 323 - 332, 26.08.2020
https://doi.org/10.19113/sdufenbed.641298

Öz

Bu çalışmada hidrotermal yöntemle sentezlenmiş Fe3O4 nanoparçacıklarının nitrat giderimindeki etkinliği, ortam şartlarının giderim verimine etkisi, kullanım sonrası geri kazanımı ve yeniden kullanılabilirliği incelenmiştir. Manyetik nanoparçacıkların yüzey morfolojisi, element içeriği, kristal yapısı, spesifik yüzey alanı ve fonksiyonel grupları, taramalı elektron mikroskobu (SEM), geçirimli elektron mikroskobu (TEM), X-ışını kırınımı (XRD), Brunauer-Emmett-Teller (BET) ve Fourier dönüşümlü kızılötesi spektroskopi (FT-IR) analizleriyle aydınlatılmıştır. Kesikli adsorpsiyon çalışmaları sonucunda, optimum ortam şartlarında (30 dk temas süresi, pH 6,9 değeri, 1,2 g/L adsorban dozu ve 100 mg/L başlangıç nitrat konsantrasyonu) %90,26 giderim verimi elde edilmiştir. Desorpsiyon çalışmaları 0,1 M’lık NaCl, NaOH, HNO3 ve HCl ile yapılmış ve NaCl ile tatminkar sonuçlar elde edilmiştir. Fe3O4 ile nitrat adsorpsiyonunun Langmuir izoterm modeliyle daha uyumlu olduğu belirlenmiş ve maksimum adsorpsiyon kapasitesi 86,96 mg/g olarak tespit edilmiştir. 

Kaynakça

  • [1] Amin, Z.A. 2007. The water problem. Daily Star, October 8.
  • [2] Mohsenipour, M., Shahid, S., Ebrahimi, K. 2014. Removal Techniques of Nitrate from Water. Asian Journal of Chemistry, 26(23), 7881-7886.
  • [3] Liu, A., Ming, J., Ankumah, R.O. 2005. Nitrate contamination in private wells in rural Alabama, United States. Science of the Total Environment, 346(1-3), 112-120.
  • [4] Kapoor, A., Viraraghavan, T. 1997. Nitrate removal from drinking water. Journal of Environmental Engineering, 123(4), 371-380.
  • [5] Bhatnagar, A., Ji, M., Choi, Y., Jung, W., Lee, S., Kim, S., Lee, G., Suk, H., Kim, H., Min, B., Kim, S-H., Jeon, B., Kang, J. 2008. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Separation Science and Technology, 43(4), 886-907.
  • [6] Kite‐Powell, A.C., A.K. Harding. 2006. Nitrate Contamination in Oregon Well Water: Geologic Variability And The Public's Perception 1. JAWRA Journal of the American Water Resources Association, 42(4), 975-987.
  • [7] Hamlin, H. J., Moore, B. C., Edwards, T. M., Larkin, I. L., Boggs, A., High, W. J., Guillette Jr, L. J. 2008. Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture. Aquaculture, 281(1-4), 118-125.
  • [8] Fenton, O., Richards, K. G., Kirwan, L., Khalil, M. I., Healy, M. G. 2009. Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland. Journal of Environmental Management, 90(10), 3135-3146.
  • [9] Hekmatzadeh, A. A., Karimi-Jashani, A., Talebbeydokhti, N., Kløve, B. 2012. Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments. Desalination, 284, 22-31.
  • [10] Hwang, Y.-H., Kim, D.-G., Shin, H.-S. 2011. Mechanism study of nitrate reduction by nano zero valent iron. Journal of Hazardous Materials, 185(2-3), 1513-1521.
  • [11] Malberg, J., Savage, E., Osteryoung. J. 1978. Nitrates in drinking water and the early onset of hypertension. Environmental Pollution, 15(2), 155-160.
  • [12] Seffner, W. 1995. Natural water contents and endemic goiter--a review. Zentralblatt fur Hygiene und Umweltmedizin= International Journal of Hygiene and Environmental Medicine, 196(5), 381-398.
  • [13] Van Maanen, J. M., van Dijk, A., Mulder, K., de Baets, M. H., Menheere, P. C., van der Heide, D., Kleinjans, J. C. 1994. Consumption of drinking water with high nitrate levels causes hypertrophy of the thyroid. Toxicology Letters, 72(1-3), 365-374.
  • [14] Rodríguez-Maroto, J. M., García-Herruzo, F., García-Rubio, A., Gómez-Lahoz, C., Vereda-Alonso, C. 2009. Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere, 74(6), 804-809.
  • [15] Shah, P.M., Raghimi, M., Khademi, M. 2005. The environmental impact of urban development on nitrate contamination of groundwater resources in Gorgan district, NE Iran, 48-55.
  • [16] World Health Organization. 2008. Guidelines for drinking-water quality: Third Edition Incorporating 1st and 2nd Addenda, WHO Library Cataloguing-in-Publication Data, Geneva, Switzerland, 668s.
  • [17] Titov, V.Y., Petrenko, Y.M. 2005. Proposed mechanism of nitrite-induced methemoglobinemia. Biochemistry (Moscow). 70(4), 473-483.
  • [18] United States Environmental Protection Agency. 2002. Edition of the drinking water standards and health advisories. EPA 822-R-02-038. Office of Water, Washington DC.
  • [19] Shrimali, M., Singh, K. 2001. New methods of nitrate removal from water. Environmental Pollution, 112(3), 351-359.
  • [20] Kalaruban, M., Loganathan, P., Shim, W. G., Kandasamy, J., Naidu, G., Nguyen, T. V., Vigneswaran, S. 2016. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies. Separation and Purification Technology, 158, 62-70.
  • [21] Samatya, S., Kabay, N., Yüksel, Ü., Arda, M., Yüksel, M. 2006. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. Reactive and Functional Polymers, 66(11), 1206-1214.
  • [22] Schoeman, J., Steyn, A. 2003. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 155(1), 15-26.
  • [23] Luo, J., Song, G., Liu, J., Qian, G., Xu, Z. P. 2014. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface. Journal of Colloid and Interface Science, 435, 21-25.
  • [24] Li, M., Feng, C., Zhang, Z., Yang, S., Sugiura, N. 2010. Treatment of nitrate contaminated water using an electrochemical method. Bioresource Technology, 101(16), 6553-6557.
  • [25] Cheng, I. F., Muftikian, R., Fernando, Q., Korte, N. 1997. Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 35(11), 2689-2695.
  • [26] Chen, Y.-M., Li, C.-W., Chen, S.-S. 2005. Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere, 59(6), 753-759.
  • [27] Kumar, M., Chakraborty, S. 2006. Chemical denitrification of water by zero-valent magnesium powder. Journal of Hazardous Materials, 135(1-3), 112-121.
  • [28] Oh, S. Y., Seo, Y. D., Kim, B., Kim, I. Y., Cha, D. K. 2016. Microbial reduction of nitrate in the presence of zero-valent iron and biochar. Bioresource Technology, 200, 891-896.
  • [29] Shi, J., Yi, S., He, H., Long, C., Li, A. 2013. Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and NO3. Chemical Engineering Journal, 230, 166-171.
  • [30] Mohammadi, A. A., Alinejad, A., Kamarehie, B., Javan, S., Ghaderpoury, A., Ahmadpour, M., Ghaderpoori, M. 2017. Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions. International Journal of Environmental Science and Technology, 14(9), 1959-1968.
  • [31] Bhatnagar, A., Kumar, E.,. Sillanpää, M. 2010. Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chemical Engineering Journal, 163(3), 317-323.
  • [32] Cengeloglu, Y., Tor, A., Ersoz, M., Arslan, G. 2006. Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51(3), 374-378.
  • [33] Islam, M., Mishra, P.C., Patel, R. 2010. Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water. Journal of Environmental Management, 91(9), 1883-1891.
  • [34] Tuutijärvi, T., Lu, J., Sillanpää, M., Chen, G. 2009. As (V) adsorption on maghemite nanoparticles. Journal of Hazardous Materials, 166(2-3), 1415-1420.
  • [35] Poursaberi, T., Karimi, M., Hassanisadi, M., Sereshti, H. 2013. Magnetic removal of nitrate ions from aqueous solution using amino-silica coated magnetic nanoparticles modified by oxovanadium (IV) porphyrin. Journal of Porphyrins and Phthalocyanines, 17(05), 359-366.
  • [36] Hadei, M., Aalipour, M., Mengli Zadeh, N., Pourzamani, H. 2016. Ethylbenzene removal from aqueous solutions by nano magnetic particles. Archives of Hygiene Sciences, 5(1), 22-32.
  • [37] Feng, Y., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., Yan, M. 2010. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 162(2), 487-494.
  • [38] Yılmaz, E. 2015. Manyetik nanokompozitlerin sentezi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 81s, Konya.
  • [39] Mahdavi, M., Ahmad, M. B., Haron, M. J., Gharayebi, Y., Shameli, K., Nadi, B. 2013. Fabrication and characterization of SiO 2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead (II) removal from aqueous solution. Journal of Inorganic and Organometallic Polymers and Materials, 23(3), 599-607.
  • [40] El Ghandoor, H., Zidan, H. M., Khalil, M. M., Ismail, M. I. M. 2012. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci, 7(6), 5734-5745.
  • [41] Kumari, M., Pittman Jr, C.U., Mohan, D. 2015. Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and Interface Science, 442, 120-132.
  • [42] Yuwei, C., Jianlong, W. 2011. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal. Chemical Engineering Journal, 168(1), 286-292.
  • [43] Malkoc, E., Nuhoglu, Y. 2006. Fixed bed studies for the sorption of chromium (VI) onto tea factory waste. Chemical Engineering Science, 61(13), 4363-4372.
  • [44] Banerjee, S.S., Chen, D.-H. 2007. Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. Journal of Hazardous Materials, 147(3), 792-799.
  • [45] Panneerselvam, P., Morad, N., Tan, K.A. 2011. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. Journal of Hazardous Materials, 186(1), 160-168.
  • [46] Chen, K., He, J., Li, Y., Cai, X., Zhang, K., Liu, T., Liu, J. 2017. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. Journal of Colloid and Interface Science, 494, 307-316.
  • [47] Rudolph, M., Erler, J., Peuker, U.A. 2012. A TGA–FTIR perspective of fatty acid adsorbed on magnetite nanoparticles–Decomposition steps and magnetite reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 397, 16-23.
  • [48] Ahmaruzzaman, M. 2008. Adsorption of phenolic compounds on low-cost adsorbents: a review. Advances in Colloid and Interface Science, 143(1-2), 48-67.
  • [49] Kamarehie, B., Aghaali, E., Musavi, S. A., Hashemi, S. Y., Jafari, A. 2018. Nitrate removal from aqueous solutions using granular activated carbon modified with iron nanoparticles. International Journal of Engineering (IJE), IJE TRANSACTIONS A: Basics, 31(4), 554-563.
  • [50] Ghasemi, E., Sillanpää, M. 2015. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples. Journal of Separation Science, 38(1), 164-169.
  • [51] Xu, T., Cai, Y., O'Shea, K.E. 2007. Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environmental Science & Technology, 41(15), 5471-5477.
  • [52] Sarı, A., Tuzen, M., Soylak, M. 2007. Adsorption of Pb (II) and Cr (III) from aqueous solution on Celtek clay. Journal of Hazardous Materials, 144(1-2), 41-46.
  • [53] Rao, R.A., Rehman, F. 2010. Adsorption studies on fruits of Gular (Ficus glomerata): removal of Cr (VI) from synthetic wastewater. Journal of Hazardous Materials, 181(1-3), 405-412.
  • [54] Öztürk, N., Bektaş, T.E.l. 2004. Nitrate removal from aqueous solution by adsorption onto various materials. Journal of Hazardous Materials, 112(1-2), 155-162.
  • [55] Demiral, H., Gündüzoğlu, G. 2010. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource Technology, 101(6), 1675-1680.
  • [56] Hu, Q., Chen, N., Feng, C., Hu, W. 2015. Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex. Applied Surface Science, 347, 1-9.
  • [57] Heidari, S., Basiri, H., Nourmoradi, H., Kamareei, B. 2016. Hexadecyl trimethyl ammonium bromide-modified montmorillonite as a low-cost sorbent for the removal of methyl red from liquid-medium. International Journal of Engineering, 29(1), 60-67.
  • [58] Dai, Y., Hu, Y., Jiang, B., Zou, J., Tian, G., Fu, H. 2016. Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. Journal of Hazardous Materials, 309, 249-258.
  • [59] Mohammadi, A. S., Sardar, M. 2013. The removal of penicillin G from aqueous solutions using chestnut shell modified with H2SO4: Isotherm and kinetic study. Iranian Journal of Health and Environment, 5(4), 497-508.
  • [60] Dewage, N. B., Liyanage, A. S., Pittman Jr, C. U., Mohan, D., Mlsna, T. 2018. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar. Bioresource Technology, 263, 258-265.
  • [61] Kheshti, Z., Ghajar, K. A., Altaee, A., Kheshti, M. R. 2019. High-Gradient Magnetic Separator (HGMS) combined with adsorption for nitrate removal from aqueous solution. Separation and Purification Technology, 212, 650-659.
  • [62] Mukhopadhyay, R., Adhikari, T., Sarkar, B., Barman, A., Paul, R., Patra, A. K., Kumar, P. 2019. Fe-exchanged nano-bentonite outperforms Fe3O4 nanoparticles in removing nitrate and bicarbonate from wastewater. Journal of Hazardous Materials, 376, 141-152.
  • [63] Khatamian, M., Divband, B., Shahi, R. 2019. Ultrasound assisted co-precipitation synthesis of Fe3O4/bentonite nanocomposite: Performance for nitrate, BOD and COD water treatment. Journal of Water Process Engineering, 31, 100870. [64] Song, W., Gao, B., Xu, X., Wang, F., Xue, N., Sun, S., Jia, R. 2016. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. Journal of Hazardous Materials, 304, 280-290.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Türkyılmaz Bu kişi benim 0000-0001-5484-571X

Sezen Küçükçongar 0000-0001-6444-4397

İlkay Özaytekin Bu kişi benim 0000-0002-0352-9458

Yayımlanma Tarihi 26 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Türkyılmaz, M., Küçükçongar, S., & Özaytekin, İ. (2020). Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 323-332. https://doi.org/10.19113/sdufenbed.641298
AMA Türkyılmaz M, Küçükçongar S, Özaytekin İ. Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2020;24(2):323-332. doi:10.19113/sdufenbed.641298
Chicago Türkyılmaz, Mehmet, Sezen Küçükçongar, ve İlkay Özaytekin. “Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 2 (Ağustos 2020): 323-32. https://doi.org/10.19113/sdufenbed.641298.
EndNote Türkyılmaz M, Küçükçongar S, Özaytekin İ (01 Ağustos 2020) Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 2 323–332.
IEEE M. Türkyılmaz, S. Küçükçongar, ve İ. Özaytekin, “Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 24, sy. 2, ss. 323–332, 2020, doi: 10.19113/sdufenbed.641298.
ISNAD Türkyılmaz, Mehmet vd. “Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/2 (Ağustos 2020), 323-332. https://doi.org/10.19113/sdufenbed.641298.
JAMA Türkyılmaz M, Küçükçongar S, Özaytekin İ. Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24:323–332.
MLA Türkyılmaz, Mehmet vd. “Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 2, 2020, ss. 323-32, doi:10.19113/sdufenbed.641298.
Vancouver Türkyılmaz M, Küçükçongar S, Özaytekin İ. Hidrotermal Yöntemle Sentezlenmiş Fe3O4 Nanoparçacıklarının Sulardan Nitrat Gideriminde Kullanımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24(2):323-32.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.