Araştırma Makalesi
BibTex RIS Kaynak Göster

β-D-Glukan, Lektin, Linoleik Asit ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması

Yıl 2020, , 394 - 401, 26.08.2020
https://doi.org/10.19113/sdufenbed.679568

Öz

β-D-glukan, lektin, linoleik asit ve β-karoten; hayvansal, bitkisel ve bakteriyel kaynaklarda bulunan, biyolojik olarak aktif bileşiklerdir. Glokom, dünya genelinde körlüğe neden olma bakımından katarakttan sonra ikinci sırada gelen bir hastalıktır. Karbonik anhidraz (CA) inhibitörleri uzun yıllardır glokom tedavisinde kullanılmaktadır. Ancak, inhibitör ajanların yan etkileri azımsanmayacak derecede çoktur. Yeni CA inhibitörlerinin geliştirilmesi üzerine çeşitli araştırma grupları çalışmalar yapmaktadırlar. Doğal kaynaklı bileşiklerin CA inhibitörü olarak kullanımının araştırılması da son yıllarda popülerlik kazanmıştır. Bu çalışmada, β-D-glukan, lektin, linoleik asit ve β-karoten bileşiklerinin, insan eritrosit CA izoenzimleri olan hCA I ve hCA II üzerine etkileri in vitro koşullarda araştırılmıştır. Bileşiklerin Ki değerleri hCA I için 0.45±0.09 µM − 37.02±17.85 µM aralığında, hCA II için 3.12±1.38 µM − 61.23±25.46 µM aralığındadır.

Destekleyen Kurum

Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

2010/8

Teşekkür

Bu çalışmaya katkılarından dolayı Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Komisyonuna teşekkürlerimizi sunarız (Proje No: 2010/8).

Kaynakça

  • [1] Ai, Q., Mai, K., Zhang, L., Tan, B., Zhang, W., Xu, W., Li, H. 2007. Effects of dietary β-1,3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish & Shellfish Immunology, 22, 394-402.
  • [2] Tiwari, U., Cummins, E. 2011. Meta-analysis of the effect of β-glucan intake on blood cholesterol and glucose levels. Nutrition, 27, 1008-1016.
  • [3] Dietrich-Muszalska, A., Olas, B., Kontek, B., Rabe-Jabłońska, J. 2011. Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol. International Journal of Biological Macromolecules, 49, 113-116.
  • [4] Bellande, K., Bono, J. J., Savelli, B., Jamet, E., Canut, H. 2017. Plant lectins and lectin receptor-like kinases: How do they sense outside?. International Journal of Molecular Sciences, 18, 1164.
  • [5] Zheng, S., Li, C., Ng, B. T., Wang, H. X. 2007. A lectin with mitogenic activity from edible wild mushroom Boletus edulis. Process Biochemistry, 42, 1620-1624.
  • [6] Li, Y. R., Liu, Q. H., Wang, H. X., Ng, T. B. 2008. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the mushroom Pleutorus citrinopleatus. Biochimica et Biophysica Acta, 1780, 51-57.
  • [7] Dulińska, J., Gil, D., Zagajewski, J., Hartwich, J., Bodzioch, M., Dembińska-Kieć, A., Langmann, T., Schmitz, G., Laidler, P. 2005. Different effect of beta-carotene on proliferation of prostate cancer cells. Biochimica et Biophysica Acta, 1740, 189-201.
  • [8] Qiu, D., Chen, Z. R., Li, H. R. 2009. Effect of heating on solid β-carotene. Food Chemistry, 112, 344-349.
  • [9] Naughton, S. S., Mathai, M. L., Hryciw, D. H., McAinch, A. J. 2016. Linoleic acid and pathogenesis of obesity. Prostaglandins & Other Lipid Mediators, 125, 90-99.
  • [10] Jung, S., Han, B. H., Nam, K., Ahn, D. U., Lee, J. H., Jo, C. 2011. Effect of dietary supplementation of gallic acid and linoleic acid mixture or their synthetic salt on egg quality. Food Chemistry, 129(3), 822-829.
  • [11] Alterio, V., Di Fiore, A., D’Ambrosio, K., Supuran, C. T., De Simone, G. 2012. Multiple binding modes of inhibitors to carbonic anhydrase: How to design specific drugs targeting 15 different isoforms?. Chemical Reviews, 112, 4421-4468.
  • [12] Supuran, C. T. 2008. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Reviews Drug Discovery, 7, 168-181.
  • [13] Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., Matsuda, Y. 2016. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proceedings of the National Academy of Sciences, 113, 9828-9833.
  • [14] Winum, J. Y., Vullo, D., Casini, A., Montero, J. L., Scozzafava, A., Supuran, C. T. 2003. Carbonic anhydrase inhibitors. Inhibition of cytosolic isozymes I and II and transmembrane tumor associated isozyme IX with sulfamates including EMATE also acting as steroid sulfatase inhibitors. Journal of Medicinal Chemistry, 46, 2197-2204.
  • [15] Şentürk, M., Gülçin, İ., Beydemir, Ş., Küfrevioğlu, Ö. İ., Supuran C. T. 2011. In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chemical Biology and Drug Design, 77, 494-499.
  • [16] Sarıkaya, S. B. Ö, Topal, F., Şentürk, M., Gülçin, İ., Supuran, C. T. 2011. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorganic & Medicinal Chemistry, 21, 4259-4262.
  • [17] Yenikaya, C., İlkimen, H., Demirel, M. M., Ceyhan, B., Bülbül, M., Tunca, E. 2016. Preparation of two maleic acid sulfonamide salts and their copper(II) complexes and antiglaucoma activity studies. Journal of Brazilian Chemical Society, 27(10), 1706-1714.
  • [18] Scozzafava, A., Banciu, M. D., Popescu, A., Supuran, C. T. 2000. Carbonic anhydrase inhibitors: Inhibition of isoenzymes I, II and IV by sulfonamide and sulfamic acid derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 15, 443-453.
  • [19] Schuman, J. S. 2000. Antiglaucoma medications: a review of safety and tolerability issues related to their use. Clinical Therapeutics, 22, 167-208.
  • [20] Brzozowski, Z., Słaviński, J., Innocenti, A., Supuran, C. T. 2010. Carbonic anhydrase inhibitors. Regioselective synthesis of novel 1-substituted 1,4-dihydro-4-oxo-3-pyridinesulfon-amides and their inhibition of human cytosolic isozymes I and II and transmembrane cancer-associated isozymes IX and XII. European Journal of Medicinal Chemistry, 45, 3656-3661.
  • [21] Balaydın, H. T., Şentürk M., Göksu, S., Menzek A. 2012. Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols and their derivatives incuding natural products: Vidalol B. European Journal of Medicinal Chemistry, 54, 423-428.
  • [22] Supuran, C. T. 2011. Carbonic anhydrase inhibition with natural products: novel chemotypes and inhibition mechanisms. Molecular Diversity, 15, 305-316.
  • [23] Innocenti, A., Sarıkaya, S. B. Ö., Gülçin, İ, Supuran, C. T. 2010. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of natural product polyphenols and phenolic acids. Bioorganic & Medicinal Chemistry, 18, 2159-2164.
  • [24] Sarıkaya, S. B. Ö., Gülçin, İ., Supuran, C. T., 2010. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chemical Biology and Drug Design, 75, 515-520.
  • [25] Rickli, E. E., Ghazanfar, S. A., Gibbons, B. H., Edsall, J. T. 1964. Carbonic anhydrases from human erythrocytes. Preparation and properties of two enzymes. Journal of Biological Chemistry, 239, 1065-1078.
  • [26] Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • [27] Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
  • [28] Wilbur, K. M., Anderson, N. G. 1948. Electrometric and colorimetric determination of carbonic anhydrase. Journal of Biological Chemistry, 176, 147-154.
  • [29] Maren, T. H. 1960. A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. Journal of Pharmacology and Experimental Therapeutics, 130, 26-29.
  • [30] Verpoorte, J. A., Mehta, S., Edsall, J. T. 1967. Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242, 4221-4229.
  • [31] Lineweaver, H., Burk, D. 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658-666.
  • [32] Topal, M. Gülçin, İ. 2014. Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitör. Turkish Journal of Chemistry, 38, 894-902.
  • [33] Supuran, C. T. 2016. Structure and function of carbonic anhydrases. Biochemical Journal 473, 2023-2032.
  • [34] Innocenti, A., Vullo, D., Scozzafava, A. Supuran, C. T. 2008. Carbonic anhydrase inhibitors. Interactions of phenols with the 12 catalytically active mammalian isoforms (CA I-XIV). Bioorganic & Medicinal Chemistry Letters, 18, 1583-1587.
  • [35] Innocenti, A., Vullo, D., Scozzafava, A. Supuran, C. T. 2008. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorganic & Medicinal Chemistry, 16, 7424-7428.
  • [36] Maresca, A., Supuran, C. T. 2010. Coumarins incorporating hydroxy and chloro moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorganic & Medicinal Chemistry Letters, 20, 4511-4514.
  • [37] Carta, F., Temperini, C., Innocenti, A., Scozzafava, A., Kaila, K., Supuran, C. T. 2010. Polyamines inhibit carbonic anydrases by anchoring to zinc-coordinated water molecule. Journal of Medicinal Chemistry, 53, 5511-5522.
  • [38] Gocer, H., Topal, F., Topal, M., Küçük, M., Teke, D., Gülçin, İ., Alwasel, S. H., Supuran, C. T. 2016. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(3), 441-447.

Investigation of the Effects of Compounds, β-D-Glucan, Lectin, Linoleic Acid and β-Carotene on Carbonic Anhydrase Enzymes

Yıl 2020, , 394 - 401, 26.08.2020
https://doi.org/10.19113/sdufenbed.679568

Öz

β-D-glucan, lectin, linoleic acid and β-carotene are biologically active compounds and they are found in animal, herbal and bacterial sources. Glaucoma is the second most common cause of blindness worldwide after cataract. Carbonic anhydrase (CA) inhibitors have been used in the treatment of glaucoma for years. However, inhibitory agents have a lot of side effects. Research groups have been working on the development of new CA inhibitors. Research into the use of compounds of natural origin as CA inhibitors has also gained popularity in recent years. In this study, the inhibitory effects of β-D-glucan, lectin, linoleic acid and β-carotene on human erythrocyte carbonic anhydrase isoenzymes, hCA I and hCA II, have been studied in vitro. The Ki values of the compounds were in the range of 0.45±0.09 µM − 37.02±17.85 µM for hCA I, and 3.12±1.38 µM − 61.23±25.46 µM for hCA II.

Proje Numarası

2010/8

Kaynakça

  • [1] Ai, Q., Mai, K., Zhang, L., Tan, B., Zhang, W., Xu, W., Li, H. 2007. Effects of dietary β-1,3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish & Shellfish Immunology, 22, 394-402.
  • [2] Tiwari, U., Cummins, E. 2011. Meta-analysis of the effect of β-glucan intake on blood cholesterol and glucose levels. Nutrition, 27, 1008-1016.
  • [3] Dietrich-Muszalska, A., Olas, B., Kontek, B., Rabe-Jabłońska, J. 2011. Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol. International Journal of Biological Macromolecules, 49, 113-116.
  • [4] Bellande, K., Bono, J. J., Savelli, B., Jamet, E., Canut, H. 2017. Plant lectins and lectin receptor-like kinases: How do they sense outside?. International Journal of Molecular Sciences, 18, 1164.
  • [5] Zheng, S., Li, C., Ng, B. T., Wang, H. X. 2007. A lectin with mitogenic activity from edible wild mushroom Boletus edulis. Process Biochemistry, 42, 1620-1624.
  • [6] Li, Y. R., Liu, Q. H., Wang, H. X., Ng, T. B. 2008. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the mushroom Pleutorus citrinopleatus. Biochimica et Biophysica Acta, 1780, 51-57.
  • [7] Dulińska, J., Gil, D., Zagajewski, J., Hartwich, J., Bodzioch, M., Dembińska-Kieć, A., Langmann, T., Schmitz, G., Laidler, P. 2005. Different effect of beta-carotene on proliferation of prostate cancer cells. Biochimica et Biophysica Acta, 1740, 189-201.
  • [8] Qiu, D., Chen, Z. R., Li, H. R. 2009. Effect of heating on solid β-carotene. Food Chemistry, 112, 344-349.
  • [9] Naughton, S. S., Mathai, M. L., Hryciw, D. H., McAinch, A. J. 2016. Linoleic acid and pathogenesis of obesity. Prostaglandins & Other Lipid Mediators, 125, 90-99.
  • [10] Jung, S., Han, B. H., Nam, K., Ahn, D. U., Lee, J. H., Jo, C. 2011. Effect of dietary supplementation of gallic acid and linoleic acid mixture or their synthetic salt on egg quality. Food Chemistry, 129(3), 822-829.
  • [11] Alterio, V., Di Fiore, A., D’Ambrosio, K., Supuran, C. T., De Simone, G. 2012. Multiple binding modes of inhibitors to carbonic anhydrase: How to design specific drugs targeting 15 different isoforms?. Chemical Reviews, 112, 4421-4468.
  • [12] Supuran, C. T. 2008. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Reviews Drug Discovery, 7, 168-181.
  • [13] Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., Matsuda, Y. 2016. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proceedings of the National Academy of Sciences, 113, 9828-9833.
  • [14] Winum, J. Y., Vullo, D., Casini, A., Montero, J. L., Scozzafava, A., Supuran, C. T. 2003. Carbonic anhydrase inhibitors. Inhibition of cytosolic isozymes I and II and transmembrane tumor associated isozyme IX with sulfamates including EMATE also acting as steroid sulfatase inhibitors. Journal of Medicinal Chemistry, 46, 2197-2204.
  • [15] Şentürk, M., Gülçin, İ., Beydemir, Ş., Küfrevioğlu, Ö. İ., Supuran C. T. 2011. In vitro inhibition of human carbonic anhydrase I and II isozymes with natural phenolic compounds. Chemical Biology and Drug Design, 77, 494-499.
  • [16] Sarıkaya, S. B. Ö, Topal, F., Şentürk, M., Gülçin, İ., Supuran, C. T. 2011. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorganic & Medicinal Chemistry, 21, 4259-4262.
  • [17] Yenikaya, C., İlkimen, H., Demirel, M. M., Ceyhan, B., Bülbül, M., Tunca, E. 2016. Preparation of two maleic acid sulfonamide salts and their copper(II) complexes and antiglaucoma activity studies. Journal of Brazilian Chemical Society, 27(10), 1706-1714.
  • [18] Scozzafava, A., Banciu, M. D., Popescu, A., Supuran, C. T. 2000. Carbonic anhydrase inhibitors: Inhibition of isoenzymes I, II and IV by sulfonamide and sulfamic acid derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 15, 443-453.
  • [19] Schuman, J. S. 2000. Antiglaucoma medications: a review of safety and tolerability issues related to their use. Clinical Therapeutics, 22, 167-208.
  • [20] Brzozowski, Z., Słaviński, J., Innocenti, A., Supuran, C. T. 2010. Carbonic anhydrase inhibitors. Regioselective synthesis of novel 1-substituted 1,4-dihydro-4-oxo-3-pyridinesulfon-amides and their inhibition of human cytosolic isozymes I and II and transmembrane cancer-associated isozymes IX and XII. European Journal of Medicinal Chemistry, 45, 3656-3661.
  • [21] Balaydın, H. T., Şentürk M., Göksu, S., Menzek A. 2012. Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols and their derivatives incuding natural products: Vidalol B. European Journal of Medicinal Chemistry, 54, 423-428.
  • [22] Supuran, C. T. 2011. Carbonic anhydrase inhibition with natural products: novel chemotypes and inhibition mechanisms. Molecular Diversity, 15, 305-316.
  • [23] Innocenti, A., Sarıkaya, S. B. Ö., Gülçin, İ, Supuran, C. T. 2010. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of natural product polyphenols and phenolic acids. Bioorganic & Medicinal Chemistry, 18, 2159-2164.
  • [24] Sarıkaya, S. B. Ö., Gülçin, İ., Supuran, C. T., 2010. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chemical Biology and Drug Design, 75, 515-520.
  • [25] Rickli, E. E., Ghazanfar, S. A., Gibbons, B. H., Edsall, J. T. 1964. Carbonic anhydrases from human erythrocytes. Preparation and properties of two enzymes. Journal of Biological Chemistry, 239, 1065-1078.
  • [26] Bradford, M. M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • [27] Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
  • [28] Wilbur, K. M., Anderson, N. G. 1948. Electrometric and colorimetric determination of carbonic anhydrase. Journal of Biological Chemistry, 176, 147-154.
  • [29] Maren, T. H. 1960. A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. Journal of Pharmacology and Experimental Therapeutics, 130, 26-29.
  • [30] Verpoorte, J. A., Mehta, S., Edsall, J. T. 1967. Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242, 4221-4229.
  • [31] Lineweaver, H., Burk, D. 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658-666.
  • [32] Topal, M. Gülçin, İ. 2014. Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitör. Turkish Journal of Chemistry, 38, 894-902.
  • [33] Supuran, C. T. 2016. Structure and function of carbonic anhydrases. Biochemical Journal 473, 2023-2032.
  • [34] Innocenti, A., Vullo, D., Scozzafava, A. Supuran, C. T. 2008. Carbonic anhydrase inhibitors. Interactions of phenols with the 12 catalytically active mammalian isoforms (CA I-XIV). Bioorganic & Medicinal Chemistry Letters, 18, 1583-1587.
  • [35] Innocenti, A., Vullo, D., Scozzafava, A. Supuran, C. T. 2008. Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I-XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorganic & Medicinal Chemistry, 16, 7424-7428.
  • [36] Maresca, A., Supuran, C. T. 2010. Coumarins incorporating hydroxy and chloro moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorganic & Medicinal Chemistry Letters, 20, 4511-4514.
  • [37] Carta, F., Temperini, C., Innocenti, A., Scozzafava, A., Kaila, K., Supuran, C. T. 2010. Polyamines inhibit carbonic anydrases by anchoring to zinc-coordinated water molecule. Journal of Medicinal Chemistry, 53, 5511-5522.
  • [38] Gocer, H., Topal, F., Topal, M., Küçük, M., Teke, D., Gülçin, İ., Alwasel, S. H., Supuran, C. T. 2016. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(3), 441-447.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Rabia Akkaş 0000-0003-2034-2158

Ekrem Tunca 0000-0001-7556-8379

Metin Bülbül 0000-0002-4722-447X

Proje Numarası 2010/8
Yayımlanma Tarihi 26 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Akkaş, R., Tunca, E., & Bülbül, M. (2020). β-D-Glukan, Lektin, Linoleik Asit ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 394-401. https://doi.org/10.19113/sdufenbed.679568
AMA Akkaş R, Tunca E, Bülbül M. β-D-Glukan, Lektin, Linoleik Asit ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2020;24(2):394-401. doi:10.19113/sdufenbed.679568
Chicago Akkaş, Rabia, Ekrem Tunca, ve Metin Bülbül. “β-D-Glukan, Lektin, Linoleik Asit Ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 2 (Ağustos 2020): 394-401. https://doi.org/10.19113/sdufenbed.679568.
EndNote Akkaş R, Tunca E, Bülbül M (01 Ağustos 2020) β-D-Glukan, Lektin, Linoleik Asit ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 2 394–401.
IEEE R. Akkaş, E. Tunca, ve M. Bülbül, “β-D-Glukan, Lektin, Linoleik Asit ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 24, sy. 2, ss. 394–401, 2020, doi: 10.19113/sdufenbed.679568.
ISNAD Akkaş, Rabia vd. “β-D-Glukan, Lektin, Linoleik Asit Ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/2 (Ağustos 2020), 394-401. https://doi.org/10.19113/sdufenbed.679568.
JAMA Akkaş R, Tunca E, Bülbül M. β-D-Glukan, Lektin, Linoleik Asit ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24:394–401.
MLA Akkaş, Rabia vd. “β-D-Glukan, Lektin, Linoleik Asit Ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 2, 2020, ss. 394-01, doi:10.19113/sdufenbed.679568.
Vancouver Akkaş R, Tunca E, Bülbül M. β-D-Glukan, Lektin, Linoleik Asit ve β-Karoten Bileşiklerinin Karbonik Anhidraz Enzimleri Üzerindeki Etkilerinin Araştırılması. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24(2):394-401.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.