Araştırma Makalesi
BibTex RIS Kaynak Göster

Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini

Yıl 2020, , 659 - 668, 25.12.2020
https://doi.org/10.19113/sdufenbed.787612

Öz

Çalışmada, prometazin tayini için kalem grafit elektrot (KGE) temelli polimerik nanotel yapılı elektrotlar (KGE-AY-NT1 ve KGE-AY-NT2) hazırlanmıştır. Döngü sayısı, tarama hızı ve ortam pH değeri gibi parametreler optimize edilmiştir. Yapılan deneyler sonucunda, optimum döngü sayısı 4, tarama hızı 100 mV/s ve ortamın pH değeri 4 olarak belirlenmiştir. Elektrotlar dönüşümlü voltametri (CV) yöntemi ile hazırlanmıştır. Elektrotların prometazin tayini üzerindeki performansı ise diferansiyel puls voltametrisi (DPV) yöntemi ile araştırılmıştır. Doğrusal çalışma aralığına 0.05-0.3 mM prometazin derişim aralığında (KGE-AY-NT1; R2=0.9995 ve KGE-AY-NT2; R2=0.9996) ulaşılmıştır. KGE-AY-NT1 ve KGE-AY-NT2 elektrotlar için gözlenebilme sınırları (LOD) sırasıyla 0.015 mM ve 0.012 mM olarak bulunmuştur (S/N=3). Girişim etkisi deney sonuçları, KGE-AY-NT1 ve KGE-AY-NT2 elektrotlarının prometazine karşı seçicilik ve hassasiyetinin, girişim yapan türlerin varlığından önemli ölçüde etkilenmediğini göstermiştir. Geliştirilen elektrotlar, standart ekleme yöntemi ile idrar numunesine katkılandırılmış prometazinin tayininde uygulanmış ve yöntemin geri kazanım değerlerinin %100’e yakın olduğu belirlenmiştir.

Kaynakça

  • [1] Honarmand, E., Motaghedifard, M. H., Hadi, M., Mostaanzadeh, H. 2016. Electro-oxidation Study of Promethazine Hydrochloride at The Surface of Modified Gold Electrode Using Molecular Self Assembly of a Novel Bis-thio Schiff Base from Ethanol Media. Journal of Molecular Liquids, 216, 429-439.
  • [2] Ponder, G. W., Stewart, J. T. 1995. A Liquid Chromatographic Method for The Determination of Promethazine Enantiomers in Human Urine and Serum Using Solid-Phase Extraction and Fluorescence Detection. Journal of Pharmaceutical and Biomedical Analysis, 13, 1161-1166.
  • [3] Vanapalli, S. R., Kambhampati, S. P., Putcha, L., Bourne, D. W. A. 2001. A Liquid Chromatographic Method for The Simultaneous Determination of Promethazine and Three of Its Metabolites in Plasma Using Electrochemical and UV Detectors. Journal of Chromatographic Science, 39, 70-72.
  • [4] Leelavathi, D. E., Dressler, D. E., Soffer, E. F., Yachetti, S. D., Knowles, J. A. 1985. Determination of Promethazine in Human Plasma by Automated High-Performance Liquid Chromatography with Electrochemical Detection and by Gas Chromatography-Mass Spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 339, 105-115.
  • [5] Pereira, P. F., Marra, M. C., Cunha, R. R., da Silva, W. P., Munoz, R. A. A., Richter, E. M. 2014. Two Simple and Fast Electrochemical Methods for Simultaneous Determination of Promethazine and Codeine. Journal of Electroanalytical Chemistry, 713, 32-38.
  • [6] Cunha, R. R., Ribeiro, M. M. A. C., Munoz, R. A. A., Richter, E. M. 2017. Fast Determination of Codeine, Orphenadrine, Promethazine, Scopolamine, Tramadol, and Paracetamol in Pharmaceutical Formulations by Capillary Electrophoresis. Journal of Separation Science, 40, 1815-1823.
  • [7] Yang, F., Zhou, K., Lu, Y., Yoshida, H., Yang, H. 2019. Simultaneous Determination of Promethazine and Its Metabolites by Improved Capillary Electrophoresis Coupled with Electrochemiluminescence. International Journal of Electrochemical Science, 14, 9159-9169.
  • [8] Sultan, S. M., Hassan, Y. A. M., Abulkibash, A. M. 2003. Chemiluminescence Assay of Promethazine Hydrochloride Using Acidic Permanganate Employing Flow Injection Mode Operated with Syringe and Peristaltic Pumps. Talanta, 59, 1073-1080.
  • [9] Basavaiah, K., Charan, V. S. 2003. New Titrimetric and Spectrophotometric Methods for The Determination of Promethazine Theoclate Using Metavanadate. Indian Journal of Chemical Technology, 10, 355-362. [10] Basavaiah, K., Swamy, J. M. 2001. Application of Potassium Dichromate and Iron-Thiocyanate in The Spectrophotometric Investigations of Phenothiazines. II Farmaco, 56, 579-585.
  • [11] Lantam, A., Limbut, W., Thiagchanya, A., Phonchai, A. 2020. A Portable Optical Colorimetric Sensor for The Determination of Promethazine in Lean Cocktail and Pharmaceutical Doses. Microchemical Journal, 159, 105519.
  • [12] Ni, Y., Wang, L., Kokot, S. 2001. Voltammetric Determination of Chlorpromazine Hydrochloride and Promethazine Hydrochloride with The Use of Multivariate Calibration. Analytica Chimica Acta, 439, 159-168.
  • [13] Yang, Z. S., Zhao, J., Zhang, D. P., Liu, Y. C. 2007. Electrochemical Determination of Trace Promethazine Hydrochloride by a Pretreated Glassy, Carbon Electrode Modified with DNA. Analytical Sciences, 23, 569-572.
  • [14] Uslu, B., Biryol, İ., Özkan, S. A., Şentürk, Z. 1996. Voltammetric Determination of Promethazine by Platinum and Glassy Carbon Electrodes. Turkish Journal of Chemistry, 20, 323-328.
  • [15] Xi, X., Ming, L., Liu, J. 2011. Voltammetric Determination of Promethazine Hydrochloride at a Multi-Wall Carbon Nanotube Modified Glassy Carbon Electrode. Drug Testing and Analysis, 3, 182-186.
  • [16] Arumugam, B., Muthukutty, B., Chen, S. M., Ramaraj, S. K., Kumar, J. V., Nagarajan, E. R. 2020. Ultrasonication-Aided Synthesis of Nanoplates-Like Iron Molybdate: Fabricated Over Glassy Carbon Electrode as An Modified Electrode for The Selective Determination of First Generation Antihistamine Drug Promethazine Hydrochloride. Ultrasonics Sonochemistry, 66, 104977.
  • [17] Xiao, P., Wu, W., Yu, J., Zhao, F. 2007. Voltammetric Sensing of Promethazine on a Multi-Walled Carbon Nanotubes Coated Gold Electrode. International Journal of Electrochemical Science, 2, 149-157.
  • [18] Li, J., Zhao, F., Zeng, B. 2007. Characterization of a Graphite Powder-Ionic Liquid Paste Coated Gold Electrode, and a Method for Voltammetric Determination of Promethazine. Microchimica Acta, 157, 27-33.
  • [19] Marco, J. P., Borges, K. B., Tarley, C. R. T., Ribeiro, E. S., Pereira, A. C. 2013. Development of a Simple, Rapid and Validated Square Wave Voltametric Method for Determination of Promethazine in Raw Material and Pharmaceutical Formulation Using DNA Modified Multiwall Carbon Nanotube Paste Electrode. Sensors and Actuators B: Chemical, 177, 251-259.
  • [20] Ribeiro, F. W. P., Cardoso, A. S., Portela, R. R., Lima, J. E. S., Machado, S. A. S., de Lima-Neto, P., de Souza D., Correia, A. N. 2008. Electroanalytical Determination of Promethazine Hydrochloride in Pharmaceutical Formulations on Highly Boron-Doped Diamond Electrodes Using Square-Wave Adsorptive Voltammetry. Electroanalysis, 20, 2031-2039.
  • [21] Amani, A. M., Motaghedifard, M. H., Honarmand, E., Motmaen, M., Ghasemi, Y., Savardashtaki, A., Monfared, A. A. 2018. Sensitive Measurement of Trace Amounts of Promethazine Hydrochloride at MWCNT-COOH Nanostructures Modified Pencil Graphite Electrode Based on Charge Transfer Complex Formation. Indian Journal of Chemistry, 57A, 770-777.
  • [22] Tian, Y., Wang, J., Wang, Z., Wang, S. 2004. Electroreduction of Nitrite at an Electrode Modified with Polypyrrole Nanowires. Synthetic Metals, 143, 309-313.
  • [23] Al-Mashat, L., Debiemme-Chouvy, C., Borensztajn, S., Wlodarski, W. 2012. Electropolymerized Polypyrrole Nanowires for Hydrogen Gas Sensing. The Journal of Physical Chemistry C, 116, 13388-13394.
  • [24] Perçin Özkorucuklu, S., Şahin, Y., Alsancak, G. (2008). Voltammetric Behaviour of Sulfamethoxazole on Electropolymerized-Molecularly Imprinted Overoxidized Polypyrrole. Sensors, 8, 8463-8478.
  • [25] Özcan, L., Şahin, Y., Türk, H. 2008. Non-Enzymatic Glucose Biosensor Based on Overoxidized Polypyrrole Nanofiber Electrode Modified with Cobalt(II) Phthalocyanine Tetrasulfonate. Biosensors and Bioelectronics, 24, 512-517.
  • [26] Ersöz, A., Gavalas, V. G., Bachas, L. G. 2002. Potentiometric Behavior of Electrodes Based on Overoxidized Polypyrrole Films. Analytical and Bioanalytical Chemistry, 372, 786-790.
  • [27] Uğur, T., Yücel, Ş., Nusret, E., Yasemin, U., Kadir, P., Attila, Y. 2004. Preparation of Sulfonated Overoxidized Polypyrrole Film Applicable as an SPME Tool for Cationic Analytes. Journal of Electroanalytical Chemistry, 570, 6-12.
  • [28] Gao, Z., Zi, M., Chen, B. 1994. The Influence of Overoxidation Treatment on The Permeability of Polypyrrole Films. Journal of Electroanalytical Chemistry, 373(1-2), 141-148.
  • [29] Şahin, M., Şahin, Y., Özcan, A. 2008. Ion Chromatography-Potentiometric Detection of Inorganic Anions and Cations Using Polypyrrole and Overoxidized Polypyrrole Electrode. Sensors and Actuators B, 133, 5-14.
  • [30] Özcan, L., Şahin, Y. 2007. Determination of Paracetamol Based on Electropolymerized-Molecularly Imprinted Polypyrrole Modified Pencil Graphite Electrode. Sensors and Actuators B: Chemical, 127(2), 362-369.
  • [31] Amani-Beni, Z., Nezamzadeh-Ejhieh, A. 2018. NiO Nanoparticles Modified Carbon Paste Electrode as a Novel Sulfasalazine Sensor. Analytica Chimica Acta, 1031, 47-59.
  • [32] Sandrino, B., Clemente, C. S., Oliveira, T. M. B. F., Ribeiro, F. W. P., Pavinatto F. J., Mazzetto, S. E., Lima-Neto, P., Correia, A. N., Pessoa, C. A., Wohnrath, C. 2013. Amphiphilic Porphyrin-Cardanol Derivatives in Langmuir and Langmuir–Blodgett Films Applied for Sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 68-75.
  • [33] Daniel, D., Gutz, I. G. R. 2003. Flow Injection Spectroelectroanalytical Method for The Determination of Promethazine Hydrochloride in Pharmaceutical Preparations. Analytica Chimica Acta, 494, 215-224.
  • [34] Ganjali, M. R., Vesimohammadi, B., Riahi, S., Norouzi, P. 2009. Promethazine Potentiometric Membrane Sensor for Promethazine Hydrochloride Pharmaceutical Analysis; Computational Study. International Journal of Electrochemical Science, 4, 740-754.

Voltammetric Determination of Promethazine Using Pencil Graphite Electrodes with Nanowire Structured

Yıl 2020, , 659 - 668, 25.12.2020
https://doi.org/10.19113/sdufenbed.787612

Öz

Kaynakça

  • [1] Honarmand, E., Motaghedifard, M. H., Hadi, M., Mostaanzadeh, H. 2016. Electro-oxidation Study of Promethazine Hydrochloride at The Surface of Modified Gold Electrode Using Molecular Self Assembly of a Novel Bis-thio Schiff Base from Ethanol Media. Journal of Molecular Liquids, 216, 429-439.
  • [2] Ponder, G. W., Stewart, J. T. 1995. A Liquid Chromatographic Method for The Determination of Promethazine Enantiomers in Human Urine and Serum Using Solid-Phase Extraction and Fluorescence Detection. Journal of Pharmaceutical and Biomedical Analysis, 13, 1161-1166.
  • [3] Vanapalli, S. R., Kambhampati, S. P., Putcha, L., Bourne, D. W. A. 2001. A Liquid Chromatographic Method for The Simultaneous Determination of Promethazine and Three of Its Metabolites in Plasma Using Electrochemical and UV Detectors. Journal of Chromatographic Science, 39, 70-72.
  • [4] Leelavathi, D. E., Dressler, D. E., Soffer, E. F., Yachetti, S. D., Knowles, J. A. 1985. Determination of Promethazine in Human Plasma by Automated High-Performance Liquid Chromatography with Electrochemical Detection and by Gas Chromatography-Mass Spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 339, 105-115.
  • [5] Pereira, P. F., Marra, M. C., Cunha, R. R., da Silva, W. P., Munoz, R. A. A., Richter, E. M. 2014. Two Simple and Fast Electrochemical Methods for Simultaneous Determination of Promethazine and Codeine. Journal of Electroanalytical Chemistry, 713, 32-38.
  • [6] Cunha, R. R., Ribeiro, M. M. A. C., Munoz, R. A. A., Richter, E. M. 2017. Fast Determination of Codeine, Orphenadrine, Promethazine, Scopolamine, Tramadol, and Paracetamol in Pharmaceutical Formulations by Capillary Electrophoresis. Journal of Separation Science, 40, 1815-1823.
  • [7] Yang, F., Zhou, K., Lu, Y., Yoshida, H., Yang, H. 2019. Simultaneous Determination of Promethazine and Its Metabolites by Improved Capillary Electrophoresis Coupled with Electrochemiluminescence. International Journal of Electrochemical Science, 14, 9159-9169.
  • [8] Sultan, S. M., Hassan, Y. A. M., Abulkibash, A. M. 2003. Chemiluminescence Assay of Promethazine Hydrochloride Using Acidic Permanganate Employing Flow Injection Mode Operated with Syringe and Peristaltic Pumps. Talanta, 59, 1073-1080.
  • [9] Basavaiah, K., Charan, V. S. 2003. New Titrimetric and Spectrophotometric Methods for The Determination of Promethazine Theoclate Using Metavanadate. Indian Journal of Chemical Technology, 10, 355-362. [10] Basavaiah, K., Swamy, J. M. 2001. Application of Potassium Dichromate and Iron-Thiocyanate in The Spectrophotometric Investigations of Phenothiazines. II Farmaco, 56, 579-585.
  • [11] Lantam, A., Limbut, W., Thiagchanya, A., Phonchai, A. 2020. A Portable Optical Colorimetric Sensor for The Determination of Promethazine in Lean Cocktail and Pharmaceutical Doses. Microchemical Journal, 159, 105519.
  • [12] Ni, Y., Wang, L., Kokot, S. 2001. Voltammetric Determination of Chlorpromazine Hydrochloride and Promethazine Hydrochloride with The Use of Multivariate Calibration. Analytica Chimica Acta, 439, 159-168.
  • [13] Yang, Z. S., Zhao, J., Zhang, D. P., Liu, Y. C. 2007. Electrochemical Determination of Trace Promethazine Hydrochloride by a Pretreated Glassy, Carbon Electrode Modified with DNA. Analytical Sciences, 23, 569-572.
  • [14] Uslu, B., Biryol, İ., Özkan, S. A., Şentürk, Z. 1996. Voltammetric Determination of Promethazine by Platinum and Glassy Carbon Electrodes. Turkish Journal of Chemistry, 20, 323-328.
  • [15] Xi, X., Ming, L., Liu, J. 2011. Voltammetric Determination of Promethazine Hydrochloride at a Multi-Wall Carbon Nanotube Modified Glassy Carbon Electrode. Drug Testing and Analysis, 3, 182-186.
  • [16] Arumugam, B., Muthukutty, B., Chen, S. M., Ramaraj, S. K., Kumar, J. V., Nagarajan, E. R. 2020. Ultrasonication-Aided Synthesis of Nanoplates-Like Iron Molybdate: Fabricated Over Glassy Carbon Electrode as An Modified Electrode for The Selective Determination of First Generation Antihistamine Drug Promethazine Hydrochloride. Ultrasonics Sonochemistry, 66, 104977.
  • [17] Xiao, P., Wu, W., Yu, J., Zhao, F. 2007. Voltammetric Sensing of Promethazine on a Multi-Walled Carbon Nanotubes Coated Gold Electrode. International Journal of Electrochemical Science, 2, 149-157.
  • [18] Li, J., Zhao, F., Zeng, B. 2007. Characterization of a Graphite Powder-Ionic Liquid Paste Coated Gold Electrode, and a Method for Voltammetric Determination of Promethazine. Microchimica Acta, 157, 27-33.
  • [19] Marco, J. P., Borges, K. B., Tarley, C. R. T., Ribeiro, E. S., Pereira, A. C. 2013. Development of a Simple, Rapid and Validated Square Wave Voltametric Method for Determination of Promethazine in Raw Material and Pharmaceutical Formulation Using DNA Modified Multiwall Carbon Nanotube Paste Electrode. Sensors and Actuators B: Chemical, 177, 251-259.
  • [20] Ribeiro, F. W. P., Cardoso, A. S., Portela, R. R., Lima, J. E. S., Machado, S. A. S., de Lima-Neto, P., de Souza D., Correia, A. N. 2008. Electroanalytical Determination of Promethazine Hydrochloride in Pharmaceutical Formulations on Highly Boron-Doped Diamond Electrodes Using Square-Wave Adsorptive Voltammetry. Electroanalysis, 20, 2031-2039.
  • [21] Amani, A. M., Motaghedifard, M. H., Honarmand, E., Motmaen, M., Ghasemi, Y., Savardashtaki, A., Monfared, A. A. 2018. Sensitive Measurement of Trace Amounts of Promethazine Hydrochloride at MWCNT-COOH Nanostructures Modified Pencil Graphite Electrode Based on Charge Transfer Complex Formation. Indian Journal of Chemistry, 57A, 770-777.
  • [22] Tian, Y., Wang, J., Wang, Z., Wang, S. 2004. Electroreduction of Nitrite at an Electrode Modified with Polypyrrole Nanowires. Synthetic Metals, 143, 309-313.
  • [23] Al-Mashat, L., Debiemme-Chouvy, C., Borensztajn, S., Wlodarski, W. 2012. Electropolymerized Polypyrrole Nanowires for Hydrogen Gas Sensing. The Journal of Physical Chemistry C, 116, 13388-13394.
  • [24] Perçin Özkorucuklu, S., Şahin, Y., Alsancak, G. (2008). Voltammetric Behaviour of Sulfamethoxazole on Electropolymerized-Molecularly Imprinted Overoxidized Polypyrrole. Sensors, 8, 8463-8478.
  • [25] Özcan, L., Şahin, Y., Türk, H. 2008. Non-Enzymatic Glucose Biosensor Based on Overoxidized Polypyrrole Nanofiber Electrode Modified with Cobalt(II) Phthalocyanine Tetrasulfonate. Biosensors and Bioelectronics, 24, 512-517.
  • [26] Ersöz, A., Gavalas, V. G., Bachas, L. G. 2002. Potentiometric Behavior of Electrodes Based on Overoxidized Polypyrrole Films. Analytical and Bioanalytical Chemistry, 372, 786-790.
  • [27] Uğur, T., Yücel, Ş., Nusret, E., Yasemin, U., Kadir, P., Attila, Y. 2004. Preparation of Sulfonated Overoxidized Polypyrrole Film Applicable as an SPME Tool for Cationic Analytes. Journal of Electroanalytical Chemistry, 570, 6-12.
  • [28] Gao, Z., Zi, M., Chen, B. 1994. The Influence of Overoxidation Treatment on The Permeability of Polypyrrole Films. Journal of Electroanalytical Chemistry, 373(1-2), 141-148.
  • [29] Şahin, M., Şahin, Y., Özcan, A. 2008. Ion Chromatography-Potentiometric Detection of Inorganic Anions and Cations Using Polypyrrole and Overoxidized Polypyrrole Electrode. Sensors and Actuators B, 133, 5-14.
  • [30] Özcan, L., Şahin, Y. 2007. Determination of Paracetamol Based on Electropolymerized-Molecularly Imprinted Polypyrrole Modified Pencil Graphite Electrode. Sensors and Actuators B: Chemical, 127(2), 362-369.
  • [31] Amani-Beni, Z., Nezamzadeh-Ejhieh, A. 2018. NiO Nanoparticles Modified Carbon Paste Electrode as a Novel Sulfasalazine Sensor. Analytica Chimica Acta, 1031, 47-59.
  • [32] Sandrino, B., Clemente, C. S., Oliveira, T. M. B. F., Ribeiro, F. W. P., Pavinatto F. J., Mazzetto, S. E., Lima-Neto, P., Correia, A. N., Pessoa, C. A., Wohnrath, C. 2013. Amphiphilic Porphyrin-Cardanol Derivatives in Langmuir and Langmuir–Blodgett Films Applied for Sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 68-75.
  • [33] Daniel, D., Gutz, I. G. R. 2003. Flow Injection Spectroelectroanalytical Method for The Determination of Promethazine Hydrochloride in Pharmaceutical Preparations. Analytica Chimica Acta, 494, 215-224.
  • [34] Ganjali, M. R., Vesimohammadi, B., Riahi, S., Norouzi, P. 2009. Promethazine Potentiometric Membrane Sensor for Promethazine Hydrochloride Pharmaceutical Analysis; Computational Study. International Journal of Electrochemical Science, 4, 740-754.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuğba Sardohan Köseoğlu 0000-0002-0707-9191

Aybüke Durgut 0000-0001-6621-7163

Yayımlanma Tarihi 25 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sardohan Köseoğlu, T., & Durgut, A. (2020). Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(3), 659-668. https://doi.org/10.19113/sdufenbed.787612
AMA Sardohan Köseoğlu T, Durgut A. Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2020;24(3):659-668. doi:10.19113/sdufenbed.787612
Chicago Sardohan Köseoğlu, Tuğba, ve Aybüke Durgut. “Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 3 (Aralık 2020): 659-68. https://doi.org/10.19113/sdufenbed.787612.
EndNote Sardohan Köseoğlu T, Durgut A (01 Aralık 2020) Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 3 659–668.
IEEE T. Sardohan Köseoğlu ve A. Durgut, “Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 24, sy. 3, ss. 659–668, 2020, doi: 10.19113/sdufenbed.787612.
ISNAD Sardohan Köseoğlu, Tuğba - Durgut, Aybüke. “Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/3 (Aralık 2020), 659-668. https://doi.org/10.19113/sdufenbed.787612.
JAMA Sardohan Köseoğlu T, Durgut A. Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24:659–668.
MLA Sardohan Köseoğlu, Tuğba ve Aybüke Durgut. “Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 3, 2020, ss. 659-68, doi:10.19113/sdufenbed.787612.
Vancouver Sardohan Köseoğlu T, Durgut A. Nanotel Yapılı Kalem Grafit Elektrotlar Kullanılarak Prometazinin Voltametrik Tayini. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24(3):659-68.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.