Araştırma Makalesi
BibTex RIS Kaynak Göster

Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization

Yıl 2021, , 255 - 261, 20.08.2021
https://doi.org/10.19113/sdufenbed.811362

Öz

Bioactive calcium silicate (CS) and lanthanum oxide (La2O3) doped bioactive calcium silicate (La-CS) materials were successfully prepared in this study. CaO, SiO2, and La2O3 used as precursors materials followed by the solid-state reaction at 1050°C for 2h. The retained particles were crushed and characterized using various methods such as XRD, FTIR, and SEM. Based on the XRD analysis outcomes, two phases of calcium silicate (CaSiO3 and Ca2SiO4) were obtained, and the quantity of CaSiO3 phase increased gradually with increasing La2O3 amount. Based on the FTIR analysis outcomes, the sharpness and area of SiO4 group shrinkage with the addition of La2O3. Based on the SEM analysis outcomes, calcium silicate particles appeared as spheroids like particles and transformed to elongated spheroidal particles with the addition of 20 wt.% of La2O3. Furthermore, incorporating 20 wt.% of La2O3 reduced the size of calcium silicate particle up to 60% of the pure samples.

Kaynakça

  • [1] T. Kokubo. 1990.Surface chemistry of bioactive glass-ceramics, Journal of Non-Crystalline Solids, 120(1-3), 138-151.
  • [2] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee. 1971. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of biomedical materials research, 5(6), 117-141.
  • [3] X. Li, J. Shi, Y. Zhu, W. Shen, H. Li, J. Liang, J. Gao. 2007. A template route to the preparation of mesoporous amorphous calcium silicate with high in vitro bone‐forming bioactivity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83(2), 431-439.
  • [4] S.-J. Ding, M.-Y. Shie, C.-Y. Wang. 2009. Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. Journal of Materials Chemistry, 19(8), 1183-1190.
  • [5] A. Meiszterics, K. Sinkó. 2011. Study of bioactive calcium silicate ceramic systems for biomedical applications. Fifth European Conference of the International Federation for Medical and Biological Engineering, Budapest, Hungary, September 14-18.
  • [6] P. Taddei, A. Tinti, M.G. Gandolfi, P.L. Rossi, C. Prati. 2009. Ageing of calcium silicate cements for endodontic use in simulated body fluids: a micro‐Raman study. Journal of Raman Spectroscopy, 40(12), 1858-1866.
  • [7] J. Wu, Y.-J. Zhu, F. Chen, X.-Y. Zhao, J. Zhao, C. Qi. 2013. Amorphous calcium silicate hydrate/block copolymer hybrid nanoparticles: synthesis and application as drug carriers. Dalton Transactions 42(19), 7032-7040.
  • [8] C.A. Barta, K. Sachs-Barrable, J. Jia, K.H. Thompson, K.M. Wasan, C. Orvig. 2007. Lanthanide containing compounds for therapeutic care in bone resorption disorders, Dalton Transactions (43), 5019-5030.
  • [9] S.V. Dorozhkin. 2015. Calcium orthophosphate bio ceramics. Ceramics International, 41(10), 13913-13966.
  • [10] P.S. Gomes, C. Botelho, M.A. Lopes, J.D. Santos, M.H. Fernandes. 2010. Evaluation of human osteoblastic cell response to plasma‐sprayed silicon‐substituted hydroxyapatite coatings over titanium substrates. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94(2), 337-346.
  • [11] E. Thian, J. Huang, M. Vickers, S. Best, Z. Barber, W. Bonfield. 2006. Silicon-substituted hydroxyapatite (SiHA): A novel calcium phosphate coating for biomedical applications. Journal of Materials science 41(3), 709-717.
  • [12] L.C. Gerber, N. Moser, N.A. Luechinger, W.J. Stark, R.N. Grass. 2012. Phosphate starvation as an antimicrobial strategy: the controllable toxicity of lanthanum oxide nanoparticles. Chemical Communications 48(32), 3869-3871.
  • [13] E.E. Quist, B.D. Roufogalis. 1975. Determination of the stoichiometry of the calcium pump in human erythrocytes using lanthanum as a selective inhibitor. FEBS letters, 50(2), 135-139.
  • [14] Y. Liu, Q. Zhang, N. Zhou, J. Tan, J. Ashley, W. Wang, F. Wu, J. Shen, M. Zhang. 2020. Study on a Novel Poly (vinyl alcohol)/Graphene Oxide-Citicoline Sodium-Lanthanum Wound Dressing: Biocompatibility, Bioactivity, Antimicrobial Activity, and Wound Healing Effect. Chemical Engineering Journal, 125059.
  • [15] M. Jaiswal, V. Koul, A.K. Dinda. 2016. In vitro and in vivo investigational studies of a nanocomposite‐hydrogel‐based dressing with a silver‐coated chitosan wafer for full‐thickness skin wounds. Journal of Applied Polymer Science, 133(21).
  • [16] Qu, X. Zhao, Y. Liang, T. Zhang, P.X. Ma, B. Guo. 2018. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 183, 185-199. [17] D.B. Mathi, D. Gopi, L. Kavitha. 2020. Implication of lanthanum substituted hydroxyapatite/poly (n-methyl pyrrole) bilayer coating on titanium for orthopedic applications. Materials today: proceedings, 26, 3526-3530.
  • [18] M. Akram, A.Z. Alshemary, Y.-F. Goh, W.A.W. Ibrahim, H.O. Lintang, R. Hussain. 2015. Continuous microwave flow synthesis of mesoporous hydroxyapatite. Materials Science and Engineering: C, 56, 356-362.
  • [19] M. Akram, R. Hussain, F.K. Butt, M. Latif. 2019. Study of the effect of microwave holding time on the physicochemical properties of titanium oxide. Materials Research Express, 6(8), 085041.
  • [20] R.E. Ngida, M. Zawrah, R. Khattab, E. Heikal. 2019. Hydrothermal synthesis, sintering and characterization of nano La-manganite perovskite doped with Ca or Sr. Ceramics International, 45(4), 4894-4901.
  • [21] R. Ghosh, R. Sarkar, S. Paul. 2016. Development of machinable hydroxyapatite-lanthanum phosphate composite for biomedical applications. Materials & Design, 106, 161-169.
  • [22] B. Nasiri-Tabrizi, P. Honarmandi, R. Ebrahimi-Kahrizsangi, P. Honarmandi. 2009. Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Materials Letters, 63(5), 543-546.
  • [23] F. Shirazi, M. Mehrali, A. Oshkour, H. Metselaar, N. Kadri, N.A. Osman. 2014. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications. Journal of the mechanical behavior of biomedical materials, 30, 168-175.
  • [24] G. de Souza Balbinot, V.C.B. Leitune, J.S. Nunes, F. Visioli, F.M. Collares. 2020. Synthesis of sol–gel derived calcium silicate particles and development of a bioactive endodontic cement. Dental Materials, 36(1), 135-144.
  • [25] M. Mabrouk, S.A. ElShebiney, S.H. Kenawy, G.T. El‐Bassyouni, E.M. Hamzawy. 2019. Novel, cost‐effective, Cu‐doped calcium silicate nanoparticles for bone fracture intervention: Inherent bioactivity and in vivo performance. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(2), 388-399.
  • [26] Y. Arslan, E. Kendüzler, V.T. Adigüzel, F. Tomul. 2019. The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials. Journal of Natural & Applied Sciences, 23(3).
  • [27] T. Kozawa, K. Yanagisawa, A. Yoshida, A. Onda, Y. Suzuki. 2013. Preparation of β-CaSiO3 powder by water vapor-assisted solid-state reaction. Journal of the Ceramic Society of Japan, 121(1409),103-105.
  • [28] K.B. Kale, R.Y. Raskar, V.H. Rane, A.G. Gaikwad. 2012. Preparation and Characterization of Calcium Silicate for CO2 Sorption. Adsorption Science & Technology, 30(10), 817-830.
  • [29] W. Widayat, T. Darmawan, H. Hadiyanto, R.A. Rosyid. 2017. Preparation of Heterogeneous CaO Catalysts for Biodiesel Production. Journal of Physics: Conference Series, 012018.
  • [30] R. Atchudan, N. Lone, J. Joo. 2018. Preparation of CaCO3 and CaO Nanoparticles via Solid-State Conversion of Calcium Oleate Precursor. Journal of nanoscience and nanotechnology, 18(3), 1958-1964.
  • [31] C.T. Yamashita, J. So, M. Fuji. 2016. Synthesis and characterization of CaO@ SiO2 nanoparticle for chemical thermal storage. Journal of the Ceramic Society of Japan, 124(1), 55-59.
  • [32] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, J. Valverde. 2014. Nanosilica supported CaO: a regenerable and mechanically hard CO2 sorbent at Ca-looping conditions. Applied energy, 118, 92-99.
  • [33] F. Puertas, F. Trivino. 1985. Examinations by infra-red spectroscopy for the polymorphs of dicalcium silicate. Cement and Concrete Research, 15(1), 127-133.
  • [34] A. Bouregba, A. Diouri. 2016. Potential formation of hydroxyapatite in total blood and dicalcium silicate elaborated from shell and glass powders. Materials Letters, 183, 405-407.
  • [35] R. Choudhary, S. Koppala, S. Swamiappan. 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. Journal of Asian Ceramic Societies, 3(2), 173-177.
  • [36] A.A. Pathan, K.R. Desai, C. Bhasin. 2017. Synthesis of La2O3 nanoparticles using glutaric acid and propylene glycol for future CMOS applications. International journal of Nanomaterials and Chemistry, 3, 21-25.
  • [37] A. Z. Alshemary, Yi-Fan Goh, M. Akram, M. R. Abdul Kadir, and R. Hussain. 2015. Barium and fluorine doped synthetic hydroxyapatite: characterization and in-vitro bioactivity analysis." Science of Advanced Materials 7, no. 2 249-257.
  • [38] A. Bernhardt, R. Dittrich, A. Lode, F. Despang and M. Gelinsky. 2013. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts." Journal of Materials Science: Materials in Medicine 24, no. 7, 1755-1766.
  • [39] S. Jadalannagari, K. Deshmukh, A.K. Verma, R.V. Kowshik, S.R. Meenal Ramanan. 2014. Lanthanum-doped hydroxyapatite nanoparticles as biocompatible fluorescent probes for cellular internalization and biolabeling. Science of Advanced Materials, 6(2), 312-319.
  • [40] Y. Bozkurt, S. Pazarlioglu, H. Gokce, I. Gurler, S. Salman. 2015. Hydroxyapatite lanthanum oxide composites. Acta Physica Polonica A, 127(4), 1407-1409.
  • [41] L.-j. Chen, C. Tian, C. Jun, B.-l. Liu, C.-s. Shao, K.-c. Zhou, D. Zhang. 2018. Effect of Tb/Mg doping on composition and physical properties of hydroxyapatite nanoparticles for gene vector application. Transactions of Nonferrous Metals Society of China, 28(1), 125-136.

Lantanyum Oksit Katkılı Kalsiyum Silikat Partikülleri: Hazırlanışı ve Karakterizasyonu

Yıl 2021, , 255 - 261, 20.08.2021
https://doi.org/10.19113/sdufenbed.811362

Öz

Bu çalışmada, biyoaktif kalsiyum silikat (CS) ve lantan oksit (La2O3) katkılı biyoaktif kalsiyum silikat (La-CS) malzemeleri başarıyla hazırlanmıştır. Öncü malzemeler olarak CaO, SiO2 ve La2O3 kullanıldı ve ardından 2 saat boyunca 1050 °C'de katı hal reaksiyonu gerçekleştirildi. Parçacıklar ezildi ve X-ışını kırınım analizi (XRD), Fourier kızılötesi spektroskopisi (FTIR) ve Taramalı elektron mikroskobu (SEM) gibi çeşitli yöntemler kullanılarak karakterize edildi. XRD analizi sonuçlarına göre kalsiyum silikat iki fazı (CaSiO3 ve Ca2SiO4) elde edildi ve artan La2O3 miktarı ile CaSiO3 fazı miktarı kademeli olarak arttı. FTIR analizinin sonuçlarına göre, La2O3 ilavesiyle SiO4 grubu büzülmesinin keskinliği ve alanı arttı. SEM analizinin sonuçlarına göre, kalsiyum silikat partikülleri küresel olarak göründü ve ağırlıkça %20 La2O3 ilavesiyle uzatılmış küresel partiküllere dönüştü. Ayrıca, La2O3'ün ağırlıkça %20'sinin dahil edilmesiyle kalsiyum silikat partikül boyutu saf numunelerin partikül boyutunun %60'ına kadar azaldı.

Kaynakça

  • [1] T. Kokubo. 1990.Surface chemistry of bioactive glass-ceramics, Journal of Non-Crystalline Solids, 120(1-3), 138-151.
  • [2] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee. 1971. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of biomedical materials research, 5(6), 117-141.
  • [3] X. Li, J. Shi, Y. Zhu, W. Shen, H. Li, J. Liang, J. Gao. 2007. A template route to the preparation of mesoporous amorphous calcium silicate with high in vitro bone‐forming bioactivity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83(2), 431-439.
  • [4] S.-J. Ding, M.-Y. Shie, C.-Y. Wang. 2009. Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. Journal of Materials Chemistry, 19(8), 1183-1190.
  • [5] A. Meiszterics, K. Sinkó. 2011. Study of bioactive calcium silicate ceramic systems for biomedical applications. Fifth European Conference of the International Federation for Medical and Biological Engineering, Budapest, Hungary, September 14-18.
  • [6] P. Taddei, A. Tinti, M.G. Gandolfi, P.L. Rossi, C. Prati. 2009. Ageing of calcium silicate cements for endodontic use in simulated body fluids: a micro‐Raman study. Journal of Raman Spectroscopy, 40(12), 1858-1866.
  • [7] J. Wu, Y.-J. Zhu, F. Chen, X.-Y. Zhao, J. Zhao, C. Qi. 2013. Amorphous calcium silicate hydrate/block copolymer hybrid nanoparticles: synthesis and application as drug carriers. Dalton Transactions 42(19), 7032-7040.
  • [8] C.A. Barta, K. Sachs-Barrable, J. Jia, K.H. Thompson, K.M. Wasan, C. Orvig. 2007. Lanthanide containing compounds for therapeutic care in bone resorption disorders, Dalton Transactions (43), 5019-5030.
  • [9] S.V. Dorozhkin. 2015. Calcium orthophosphate bio ceramics. Ceramics International, 41(10), 13913-13966.
  • [10] P.S. Gomes, C. Botelho, M.A. Lopes, J.D. Santos, M.H. Fernandes. 2010. Evaluation of human osteoblastic cell response to plasma‐sprayed silicon‐substituted hydroxyapatite coatings over titanium substrates. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94(2), 337-346.
  • [11] E. Thian, J. Huang, M. Vickers, S. Best, Z. Barber, W. Bonfield. 2006. Silicon-substituted hydroxyapatite (SiHA): A novel calcium phosphate coating for biomedical applications. Journal of Materials science 41(3), 709-717.
  • [12] L.C. Gerber, N. Moser, N.A. Luechinger, W.J. Stark, R.N. Grass. 2012. Phosphate starvation as an antimicrobial strategy: the controllable toxicity of lanthanum oxide nanoparticles. Chemical Communications 48(32), 3869-3871.
  • [13] E.E. Quist, B.D. Roufogalis. 1975. Determination of the stoichiometry of the calcium pump in human erythrocytes using lanthanum as a selective inhibitor. FEBS letters, 50(2), 135-139.
  • [14] Y. Liu, Q. Zhang, N. Zhou, J. Tan, J. Ashley, W. Wang, F. Wu, J. Shen, M. Zhang. 2020. Study on a Novel Poly (vinyl alcohol)/Graphene Oxide-Citicoline Sodium-Lanthanum Wound Dressing: Biocompatibility, Bioactivity, Antimicrobial Activity, and Wound Healing Effect. Chemical Engineering Journal, 125059.
  • [15] M. Jaiswal, V. Koul, A.K. Dinda. 2016. In vitro and in vivo investigational studies of a nanocomposite‐hydrogel‐based dressing with a silver‐coated chitosan wafer for full‐thickness skin wounds. Journal of Applied Polymer Science, 133(21).
  • [16] Qu, X. Zhao, Y. Liang, T. Zhang, P.X. Ma, B. Guo. 2018. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 183, 185-199. [17] D.B. Mathi, D. Gopi, L. Kavitha. 2020. Implication of lanthanum substituted hydroxyapatite/poly (n-methyl pyrrole) bilayer coating on titanium for orthopedic applications. Materials today: proceedings, 26, 3526-3530.
  • [18] M. Akram, A.Z. Alshemary, Y.-F. Goh, W.A.W. Ibrahim, H.O. Lintang, R. Hussain. 2015. Continuous microwave flow synthesis of mesoporous hydroxyapatite. Materials Science and Engineering: C, 56, 356-362.
  • [19] M. Akram, R. Hussain, F.K. Butt, M. Latif. 2019. Study of the effect of microwave holding time on the physicochemical properties of titanium oxide. Materials Research Express, 6(8), 085041.
  • [20] R.E. Ngida, M. Zawrah, R. Khattab, E. Heikal. 2019. Hydrothermal synthesis, sintering and characterization of nano La-manganite perovskite doped with Ca or Sr. Ceramics International, 45(4), 4894-4901.
  • [21] R. Ghosh, R. Sarkar, S. Paul. 2016. Development of machinable hydroxyapatite-lanthanum phosphate composite for biomedical applications. Materials & Design, 106, 161-169.
  • [22] B. Nasiri-Tabrizi, P. Honarmandi, R. Ebrahimi-Kahrizsangi, P. Honarmandi. 2009. Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Materials Letters, 63(5), 543-546.
  • [23] F. Shirazi, M. Mehrali, A. Oshkour, H. Metselaar, N. Kadri, N.A. Osman. 2014. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications. Journal of the mechanical behavior of biomedical materials, 30, 168-175.
  • [24] G. de Souza Balbinot, V.C.B. Leitune, J.S. Nunes, F. Visioli, F.M. Collares. 2020. Synthesis of sol–gel derived calcium silicate particles and development of a bioactive endodontic cement. Dental Materials, 36(1), 135-144.
  • [25] M. Mabrouk, S.A. ElShebiney, S.H. Kenawy, G.T. El‐Bassyouni, E.M. Hamzawy. 2019. Novel, cost‐effective, Cu‐doped calcium silicate nanoparticles for bone fracture intervention: Inherent bioactivity and in vivo performance. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(2), 388-399.
  • [26] Y. Arslan, E. Kendüzler, V.T. Adigüzel, F. Tomul. 2019. The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials. Journal of Natural & Applied Sciences, 23(3).
  • [27] T. Kozawa, K. Yanagisawa, A. Yoshida, A. Onda, Y. Suzuki. 2013. Preparation of β-CaSiO3 powder by water vapor-assisted solid-state reaction. Journal of the Ceramic Society of Japan, 121(1409),103-105.
  • [28] K.B. Kale, R.Y. Raskar, V.H. Rane, A.G. Gaikwad. 2012. Preparation and Characterization of Calcium Silicate for CO2 Sorption. Adsorption Science & Technology, 30(10), 817-830.
  • [29] W. Widayat, T. Darmawan, H. Hadiyanto, R.A. Rosyid. 2017. Preparation of Heterogeneous CaO Catalysts for Biodiesel Production. Journal of Physics: Conference Series, 012018.
  • [30] R. Atchudan, N. Lone, J. Joo. 2018. Preparation of CaCO3 and CaO Nanoparticles via Solid-State Conversion of Calcium Oleate Precursor. Journal of nanoscience and nanotechnology, 18(3), 1958-1964.
  • [31] C.T. Yamashita, J. So, M. Fuji. 2016. Synthesis and characterization of CaO@ SiO2 nanoparticle for chemical thermal storage. Journal of the Ceramic Society of Japan, 124(1), 55-59.
  • [32] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, J. Valverde. 2014. Nanosilica supported CaO: a regenerable and mechanically hard CO2 sorbent at Ca-looping conditions. Applied energy, 118, 92-99.
  • [33] F. Puertas, F. Trivino. 1985. Examinations by infra-red spectroscopy for the polymorphs of dicalcium silicate. Cement and Concrete Research, 15(1), 127-133.
  • [34] A. Bouregba, A. Diouri. 2016. Potential formation of hydroxyapatite in total blood and dicalcium silicate elaborated from shell and glass powders. Materials Letters, 183, 405-407.
  • [35] R. Choudhary, S. Koppala, S. Swamiappan. 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. Journal of Asian Ceramic Societies, 3(2), 173-177.
  • [36] A.A. Pathan, K.R. Desai, C. Bhasin. 2017. Synthesis of La2O3 nanoparticles using glutaric acid and propylene glycol for future CMOS applications. International journal of Nanomaterials and Chemistry, 3, 21-25.
  • [37] A. Z. Alshemary, Yi-Fan Goh, M. Akram, M. R. Abdul Kadir, and R. Hussain. 2015. Barium and fluorine doped synthetic hydroxyapatite: characterization and in-vitro bioactivity analysis." Science of Advanced Materials 7, no. 2 249-257.
  • [38] A. Bernhardt, R. Dittrich, A. Lode, F. Despang and M. Gelinsky. 2013. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts." Journal of Materials Science: Materials in Medicine 24, no. 7, 1755-1766.
  • [39] S. Jadalannagari, K. Deshmukh, A.K. Verma, R.V. Kowshik, S.R. Meenal Ramanan. 2014. Lanthanum-doped hydroxyapatite nanoparticles as biocompatible fluorescent probes for cellular internalization and biolabeling. Science of Advanced Materials, 6(2), 312-319.
  • [40] Y. Bozkurt, S. Pazarlioglu, H. Gokce, I. Gurler, S. Salman. 2015. Hydroxyapatite lanthanum oxide composites. Acta Physica Polonica A, 127(4), 1407-1409.
  • [41] L.-j. Chen, C. Tian, C. Jun, B.-l. Liu, C.-s. Shao, K.-c. Zhou, D. Zhang. 2018. Effect of Tb/Mg doping on composition and physical properties of hydroxyapatite nanoparticles for gene vector application. Transactions of Nonferrous Metals Society of China, 28(1), 125-136.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İsmail Seçkin Çardaklı 0000-0003-1033-7697

Yayımlanma Tarihi 20 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Çardaklı, İ. S. (2021). Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 255-261. https://doi.org/10.19113/sdufenbed.811362
AMA Çardaklı İS. Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2021;25(2):255-261. doi:10.19113/sdufenbed.811362
Chicago Çardaklı, İsmail Seçkin. “Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 2 (Ağustos 2021): 255-61. https://doi.org/10.19113/sdufenbed.811362.
EndNote Çardaklı İS (01 Ağustos 2021) Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 2 255–261.
IEEE İ. S. Çardaklı, “Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 25, sy. 2, ss. 255–261, 2021, doi: 10.19113/sdufenbed.811362.
ISNAD Çardaklı, İsmail Seçkin. “Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (Ağustos 2021), 255-261. https://doi.org/10.19113/sdufenbed.811362.
JAMA Çardaklı İS. Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25:255–261.
MLA Çardaklı, İsmail Seçkin. “Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 2, 2021, ss. 255-61, doi:10.19113/sdufenbed.811362.
Vancouver Çardaklı İS. Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25(2):255-61.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.