Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği

Yıl 2021, , 636 - 643, 30.12.2021
https://doi.org/10.19113/sdufenbed.896324

Öz

Avrupa Yeşil Mutabakatı (A European Green Deal), iklim ve çevreyle ilgili zorluklarla mücadele için kararlı adımlar atılmasını sağlamak üzere 2019 yılında çağrıya çıkan kapsamlı bir büyüme stratejisidir. Bu stratejinin, ekosistem ve biyoçeşitliliği korumak, geliştirmek, sürdürülebilir ve akıllı hareketliliği sağlamak ana başlıkları, yeşil altyapı sistemlerinin temel çıktıları olarak çalışmanın çerçevesini oluşturmaktadır. Yeşil altyapı sistemi, kentsel alanda ekolojik ve sosyal faydaları birleştirmesi yanında eksik olan ekosistem hizmetlerini de sağlama potansiyeline sahiptir. Ancak birçok kent birbirinden bağımsız yeşil alana sahip olmasına rağmen, bağlantıların planlanmamış olmasından dolayı yeşil altyapı sisteminin faydalarından yararlanamamaktadır. Bu çalışma, kentsel yeşil alanları, yeşil altyapı sistemine entegre ederek bütünleşik bir ekolojik ağ sistemi önermeyi amaçlamaktadır. Bu kapsamda, Antalya ili Konyaaltı bölgesi özelinde uzaktan algılama ve coğrafi bilgi sistemleri kullanılarak uydu görüntüleri yardımıyla kentsel yeşil alanlar belirlenmiştir. Ardından yeşil alanlar, peyzajların yapısal ve işlevsel devamlılığı sağlamak üzere, yeşil altyapı sisteminin bağlantı elemanları olan akarsu ve karayolları vasıtasıyla birleştirilerek ekolojik koridorlar oluşturulmuştur. Son olarak, oluşturulan yeşil altyapı sisteminin kent bütününe hizmet edebilmesi açısından, potansiyel ekolojik koridor önerileri sunulmuştur. Bu çalışma, sürekli büyüyen ve genişleyen kentlerde, yeşil alanların ekolojik koridorlar ile birbirine bağlanarak yeşil altyapı sistemlerinin oluşturulmasına ve geliştirilmesine dair örnek oluşturmakta, kentsel planlama stratejilerinde biyolojik çeşitliliğin korunmasına katkı sağlayacak model sunmaktadır.

Kaynakça

  • [1] Coleman, S., Hurley, S., Koliba, C., Zia, A. 2017. Crowdsourced Delphis: Designing solutions to complex environmental problems with broad stakeholder participation. Global Environmental Change, 45, 111-123.
  • [2] Minx, J. C., Callaghan, M., Lamb, W. F., Garard, J., Edenhofer, O. 2017. Learning about climate change solutions in the IPCC and beyond. Environmental Science & Policy, 77, 252-259.
  • [3] Seyfang, G. 2003. Environmental mega-conferences—from Stockholm to Johannesburg and beyond. Global Environmental Change, 13(3), 223-228.
  • [4] Redclift, M. 2005. Sustainable development (1987–2005): an oxymoron comes of age. Sustainable development, 13(4), 212-227.
  • [5] Rogalla von Bieberstein, K., Sattout, E., Christensen, M., Pisupati, B., Burgess, N. D., Harrison, J., Geldmann, J. 2019. Improving collaboration in the implementation of global biodiversity conventions. Conservation Biology, 33(4), 821-831.
  • [6] Bolin, B. 1998. The Kyoto negotiations on climate change: a science perspective. Science, 279(5349), 330-331.
  • [7] Biermann, F., Kanie, N., Kim, R. E. 2017. Global governance by goal-setting: the novel approach of the UN Sustainable Development Goals. Current Opinion in Environmental Sustainability, 26, 26-31.
  • [8] Siddi, M. 2020. The European Green Deal: assessing its current state and future implementation. Climate Policy, 16(5), 543-547.
  • [9] Sikora, A. 2021. European Green Deal–legal and financial challenges of the climate change. In ERA Forum 21(4), 681-697.
  • [10] EU, 2021, An Official Website of the European Union, The EU aims to be climate-neutral by 2050,https://ec.europa.eu/clima/policies/strategies/2050_en (Erişim tarihi: 01.03.2021)
  • [11] Selim, S., Kaplan, A. 2016. Engaging Green Infrastructure Scheme into Watershed- and Urban-based Planning and Design Realms, Proceedings of the Fábos Conference on Landscape and Greenway Planning, 5(2), 15.
  • [12] Benedict, M.A., McMahon, E.T. 2006. Green Infrastructure: Linking Landscapes and Communities, Washington, D.C., Island Press, 299s.
  • [13] Mell, I.C. 2010. Green Infrastructure: Concepts, Perceptions and Its Use in Spatial Planning, PhD Thesis, School of Architecture Planning and Landscape, Newcastle University, UK, 291s.
  • [14] Wei, J., Qian, J., Tao, Y., Hu, F., Ou, W. 2018. Evaluating spatial priority of urban green infrastructure for urban sustainability in areas of rapid urbanization: A case study of Pukou in China. Sustainability, 10(2), 327.
  • [15] Lee, Y. C., Kim, K. H. 2015. Attitudes of citizens towards urban parks and green spaces for urban sustainability: The case of Gyeongsan City, Republic of Korea. Sustainability, 7(7), 8240-8254.
  • [16] Furberg, D., Ban, Y., Mörtberg, U. 2020. Monitoring urban green infrastructure changes and impact on habitat connectivity using high-resolution satellite data. Remote Sensing, 12(18), 3072.
  • [17] Antalya Valiliği, 2021. Antalya Valiliği Resmi İnternet Sitesi, http://www.antalya.gov.tr/antalyanin-2020-yili-nufusu-belli-oldu (Erişim tarihi: 01.03.2021)
  • [18] Konyaaltı Belediyesi, 2021. Konyaaltı Belediyesi Resmi İnternet Sitesi, https://konyaalti.bel.tr/haberler/17678-antalya-nin-yesil-dokusu-konyaalti-nda (Erişim tarihi: 26.02.2021)
  • [19] Chen, W. Y. 2015. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities, 44, 112-120.
  • [20] Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., James, P. 2007. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and urban planning, 81(3), 167-178.
  • [21] Sanesi, G., Colangelo, G., Lafortezza, R., Calvo, E., Davies, C. 2017. Urban green infrastructure and urban forests: A case study of the Metropolitan Area of Milan. Landscape Research, 42(2), 164-175.
  • [22] Vergnes, A., Kerbiriou, C., Clergeau, P. 2013. Ecological corridors also operate in an urban matrix: a test case with garden shrews. Urban Ecosystems, 16(3), 511-525.
  • [23] Peng, J., Zhao, H., Liu, Y. 2017. Urban ecological corridors construction: A review. Acta Ecologica Sinica, 37(1), 23-30.
  • [24] Li, F., Liu, X., Zhang, X., Zhao, D., Liu, H., Zhou, C., Wang, R. 2017. Urban ecological infrastructure: an integrated network for ecosystem services and sustainable urban systems. Journal of Cleaner Production, 163, 12-18.
  • [25] Weber, T., Sloan, A., Wolf, J. 2006. Maryland's Green Infrastructure Assessment: Development of a comprehensive approach to land conservation. Landscape and urban planning, 77(1-2), 94-110.
  • [26] Jia, Y. P., Lu, K. F., Zheng, T., Li, X. B., Liu, X., Peng, Z. R., He, H. D. 2021. Effects of roadside green infrastructure on particle exposure: A focus on cyclists and pedestrians on pathways between urban roads and vegetative barriers. Atmospheric Pollution Research, 12(3), 1-12.
  • [27] GDCI, 2021. Global Designing Cities Initiative, https://globaldesigningcities.org/publication /global-street-design-guide/utilities-and-infrastructure/green-infrastructure-stormwater-management/ (Erişim tarihi: 01.03.2021)
  • [28] Westofengland, 2011. West of England Strategic Green Infrastructure Framework, West of England Partnership, Natural England, Environment Agency, and Forestry Commission, http://www.westofengland.org/media/216918/gi%20framework%20020611.pdf (Erişim tarihi: 03.03.2021).
  • [29] River Nene National Park, 2018. A Green Infrastructure Delivery Plan for the Kettering Borough, Kettering Borough Council Information, Environment Agency, 126p.
  • [30] Zaręba, A. 2014. Multifunctional and multiscale aspects of green infrastructure in contemporary research. Problems of Sustainable Development, 9(121), 149-156.
  • [31] Coutts, C., Hahn, M. 2015. Green infrastructure, ecosystem services, and human health. International journal of environmental research and public health, 12(8), 9768-9798.
  • [32] Zhang, Z., Meerow, S., Newell, J. P., Lindquist, M. 2019. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry & Urban Greening, 38, 305-317.
  • [33] Foster, J., Lowe, A., Winkelman, S. 2011. The value of green infrastructure for urban climate adaptation. Center for Clean Air Policy, 750(1), 1-52.
  • [34] Özcan, K. Y. 2019. Yeşil Yeni Düzen ve Yeşil Büyüme Bağlamında Kayseri, Sakarya, Hatay ve Samsun Örnekleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 1013-1031.
  • [35] Olgun, R., Yılmaz, T. 2019. İmar Planlarının Peyzaj Ekolojisi Yaklaşımı ile Değerlendirilmesi: Niğde Kenti Örneği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 770-779.

Integration of Urban Green Lands into Green Infrastructure System in the Framework of European Green Deal: The Case Study of Konyaaltı-Antalya, Turkey

Yıl 2021, , 636 - 643, 30.12.2021
https://doi.org/10.19113/sdufenbed.896324

Öz

A European Green Deal is a comprehensive growth strategy called for in 2019 to ensure decisive action to tackle climate and environmental challenges. The main topics of this strategy are to protect ecosystem services and biodiversity, to ensure sustainable and smart mobility. These main headings are the main outputs of green infrastructure systems and these outputs form the framework of the study. Green infrastructure system has the potential to provide missing ecosystem services in many urban areas, as well as combining ecological and social benefits. However, although many cities have independent green spaces, they cannot benefit from the advantages of the green infrastructure system due to the unplanned ecological connections. This study aims to propose a holistic ecological network system by integrating urban green lands into the green infrastructure system. In this context, urban green areas were determined by using remote sensing and geographical information systems with the help of satellite images in Konyaaltı, Antalya/Turkey. Then, in order to ensure the structural and functional continuity of the landscapes, ecological corridors were created by combining green lands with rivers and highways which are the connecting elements of the green infrastructure system. Finally, potential ecological corridor suggestions are presented in order for the established green infrastructure system to serve the whole city. This study is an example of the establishment and development of green infrastructure systems by connecting green lands with ecological corridors in constantly growing and expanding cities and provides a model that will contribute to the protection of biodiversity in urban planning strategies.

Kaynakça

  • [1] Coleman, S., Hurley, S., Koliba, C., Zia, A. 2017. Crowdsourced Delphis: Designing solutions to complex environmental problems with broad stakeholder participation. Global Environmental Change, 45, 111-123.
  • [2] Minx, J. C., Callaghan, M., Lamb, W. F., Garard, J., Edenhofer, O. 2017. Learning about climate change solutions in the IPCC and beyond. Environmental Science & Policy, 77, 252-259.
  • [3] Seyfang, G. 2003. Environmental mega-conferences—from Stockholm to Johannesburg and beyond. Global Environmental Change, 13(3), 223-228.
  • [4] Redclift, M. 2005. Sustainable development (1987–2005): an oxymoron comes of age. Sustainable development, 13(4), 212-227.
  • [5] Rogalla von Bieberstein, K., Sattout, E., Christensen, M., Pisupati, B., Burgess, N. D., Harrison, J., Geldmann, J. 2019. Improving collaboration in the implementation of global biodiversity conventions. Conservation Biology, 33(4), 821-831.
  • [6] Bolin, B. 1998. The Kyoto negotiations on climate change: a science perspective. Science, 279(5349), 330-331.
  • [7] Biermann, F., Kanie, N., Kim, R. E. 2017. Global governance by goal-setting: the novel approach of the UN Sustainable Development Goals. Current Opinion in Environmental Sustainability, 26, 26-31.
  • [8] Siddi, M. 2020. The European Green Deal: assessing its current state and future implementation. Climate Policy, 16(5), 543-547.
  • [9] Sikora, A. 2021. European Green Deal–legal and financial challenges of the climate change. In ERA Forum 21(4), 681-697.
  • [10] EU, 2021, An Official Website of the European Union, The EU aims to be climate-neutral by 2050,https://ec.europa.eu/clima/policies/strategies/2050_en (Erişim tarihi: 01.03.2021)
  • [11] Selim, S., Kaplan, A. 2016. Engaging Green Infrastructure Scheme into Watershed- and Urban-based Planning and Design Realms, Proceedings of the Fábos Conference on Landscape and Greenway Planning, 5(2), 15.
  • [12] Benedict, M.A., McMahon, E.T. 2006. Green Infrastructure: Linking Landscapes and Communities, Washington, D.C., Island Press, 299s.
  • [13] Mell, I.C. 2010. Green Infrastructure: Concepts, Perceptions and Its Use in Spatial Planning, PhD Thesis, School of Architecture Planning and Landscape, Newcastle University, UK, 291s.
  • [14] Wei, J., Qian, J., Tao, Y., Hu, F., Ou, W. 2018. Evaluating spatial priority of urban green infrastructure for urban sustainability in areas of rapid urbanization: A case study of Pukou in China. Sustainability, 10(2), 327.
  • [15] Lee, Y. C., Kim, K. H. 2015. Attitudes of citizens towards urban parks and green spaces for urban sustainability: The case of Gyeongsan City, Republic of Korea. Sustainability, 7(7), 8240-8254.
  • [16] Furberg, D., Ban, Y., Mörtberg, U. 2020. Monitoring urban green infrastructure changes and impact on habitat connectivity using high-resolution satellite data. Remote Sensing, 12(18), 3072.
  • [17] Antalya Valiliği, 2021. Antalya Valiliği Resmi İnternet Sitesi, http://www.antalya.gov.tr/antalyanin-2020-yili-nufusu-belli-oldu (Erişim tarihi: 01.03.2021)
  • [18] Konyaaltı Belediyesi, 2021. Konyaaltı Belediyesi Resmi İnternet Sitesi, https://konyaalti.bel.tr/haberler/17678-antalya-nin-yesil-dokusu-konyaalti-nda (Erişim tarihi: 26.02.2021)
  • [19] Chen, W. Y. 2015. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities, 44, 112-120.
  • [20] Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., James, P. 2007. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and urban planning, 81(3), 167-178.
  • [21] Sanesi, G., Colangelo, G., Lafortezza, R., Calvo, E., Davies, C. 2017. Urban green infrastructure and urban forests: A case study of the Metropolitan Area of Milan. Landscape Research, 42(2), 164-175.
  • [22] Vergnes, A., Kerbiriou, C., Clergeau, P. 2013. Ecological corridors also operate in an urban matrix: a test case with garden shrews. Urban Ecosystems, 16(3), 511-525.
  • [23] Peng, J., Zhao, H., Liu, Y. 2017. Urban ecological corridors construction: A review. Acta Ecologica Sinica, 37(1), 23-30.
  • [24] Li, F., Liu, X., Zhang, X., Zhao, D., Liu, H., Zhou, C., Wang, R. 2017. Urban ecological infrastructure: an integrated network for ecosystem services and sustainable urban systems. Journal of Cleaner Production, 163, 12-18.
  • [25] Weber, T., Sloan, A., Wolf, J. 2006. Maryland's Green Infrastructure Assessment: Development of a comprehensive approach to land conservation. Landscape and urban planning, 77(1-2), 94-110.
  • [26] Jia, Y. P., Lu, K. F., Zheng, T., Li, X. B., Liu, X., Peng, Z. R., He, H. D. 2021. Effects of roadside green infrastructure on particle exposure: A focus on cyclists and pedestrians on pathways between urban roads and vegetative barriers. Atmospheric Pollution Research, 12(3), 1-12.
  • [27] GDCI, 2021. Global Designing Cities Initiative, https://globaldesigningcities.org/publication /global-street-design-guide/utilities-and-infrastructure/green-infrastructure-stormwater-management/ (Erişim tarihi: 01.03.2021)
  • [28] Westofengland, 2011. West of England Strategic Green Infrastructure Framework, West of England Partnership, Natural England, Environment Agency, and Forestry Commission, http://www.westofengland.org/media/216918/gi%20framework%20020611.pdf (Erişim tarihi: 03.03.2021).
  • [29] River Nene National Park, 2018. A Green Infrastructure Delivery Plan for the Kettering Borough, Kettering Borough Council Information, Environment Agency, 126p.
  • [30] Zaręba, A. 2014. Multifunctional and multiscale aspects of green infrastructure in contemporary research. Problems of Sustainable Development, 9(121), 149-156.
  • [31] Coutts, C., Hahn, M. 2015. Green infrastructure, ecosystem services, and human health. International journal of environmental research and public health, 12(8), 9768-9798.
  • [32] Zhang, Z., Meerow, S., Newell, J. P., Lindquist, M. 2019. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban Forestry & Urban Greening, 38, 305-317.
  • [33] Foster, J., Lowe, A., Winkelman, S. 2011. The value of green infrastructure for urban climate adaptation. Center for Clean Air Policy, 750(1), 1-52.
  • [34] Özcan, K. Y. 2019. Yeşil Yeni Düzen ve Yeşil Büyüme Bağlamında Kayseri, Sakarya, Hatay ve Samsun Örnekleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 1013-1031.
  • [35] Olgun, R., Yılmaz, T. 2019. İmar Planlarının Peyzaj Ekolojisi Yaklaşımı ile Değerlendirilmesi: Niğde Kenti Örneği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 770-779.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serdar Selim 0000-0002-5631-6253

Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Selim, S. (2021). Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 636-643. https://doi.org/10.19113/sdufenbed.896324
AMA Selim S. Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2021;25(3):636-643. doi:10.19113/sdufenbed.896324
Chicago Selim, Serdar. “Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 3 (Aralık 2021): 636-43. https://doi.org/10.19113/sdufenbed.896324.
EndNote Selim S (01 Aralık 2021) Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 3 636–643.
IEEE S. Selim, “Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 25, sy. 3, ss. 636–643, 2021, doi: 10.19113/sdufenbed.896324.
ISNAD Selim, Serdar. “Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/3 (Aralık 2021), 636-643. https://doi.org/10.19113/sdufenbed.896324.
JAMA Selim S. Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25:636–643.
MLA Selim, Serdar. “Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 3, 2021, ss. 636-43, doi:10.19113/sdufenbed.896324.
Vancouver Selim S. Yeşil Mutabakat Çerçevesinde Kentsel Yeşil Alanların Yeşil Altyapı Sistemine Entegrasyonu: Antalya-Konyaaltı Örneği. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25(3):636-43.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.