Araştırma Makalesi
BibTex RIS Kaynak Göster

Gerçek Zamanlı Otomatik Elma Tasnifleme

Yıl 2013, Cilt: 17 Sayı: 2, 31 - 38, 11.07.2014

Öz

Günümüzde gıda ürünlerinin kalitesinin belirlenmesi ve tasniflenmesi önemli bir problemdir. Sebze ve meyvelerin kalitelerine ve özelliklerine göre sınıflandırılması, genellikle kalite kontrol işçileri tarafından el ve gözle yapılmaktadır. Bu yöntem, kalitedeki standardı sağlamamakta ve hatta yanlış sınıflandırmalar olabilmektedir. Ayrıca zaman ve iş gücü açısından büyük kayıplar oluşmaktadır. Bu sorunlar makine görmesi ile ortadan kaldırabilir. Makine görmesi ile otomatik olarak daha hızlı ve standartlara uygun meyve tasniflemesi mümkündür. Çalışmada gerçek zamanlı çalışan band üzerinde ilerleyen elmaların anlık görüntüleri alınmıştır. Alınan görüntüler yine gerçek zamanlı olarak Matlab programı içerisindeki görüntü işleme modülü kullanılarak işlenmiştir. Görüntüler ilk önce temizlenmiştir. Net görüntüler üzerinden renk, boyut ve ağırlık tahmini yapılmıştır.
Bu çalışmada yürüyen bant üzerinden geçen elmaların gerçek zamanlı olarak boyut, renk, sınıf ve ağırlık tespiti %95,5 başarımla sağlanmıştır. Bir elmanın ortalama tanıma süresi ise 0,5 saniyeye çekilmiştir.

Kaynakça

  • Anonim, 2009. Eğirdir Bahçe Kültürleri Araştırma
  • Enstitüsü Sorumluluk Alanı. Eğirdir Bahçe Kültürleri Araştırma Enstitüsü. 14-15 s. Bennedsen, B., Peterson, D., Tabb, A., 2005.
  • Identifying defects in images of rotating apples. Computers and Electronics in Agriculture, 48, 92-102. Blasco, J., Aleixos, N., Moltó, E., 2003. Machine vision system for automatic quality grading of fruit.
  • Biosystams Engineering, 85, 415–423. Cetişli B., Kalkan H., 2011. Polynomial Curve fitting with varying real powers, Journal of Electronics and Electrical Engineering, 6(112), 117-122.
  • Chen, Y., Chao, K., Kim, M., 2002. Machine vision technology for agricultural applications. Computers and Electronics in Agriculture, 36, 173-191.
  • Johnsonbaugh E., Jost R., Gose S., 2009, Pattern recognition and image analysis, Phi Learning Private Limited.
  • Kavdir, I., Guyer, D.E., 2004. Comparison of artificial neural networks and statistical classifiers in apple sorting Engineering, 89, 331–344. features. Biosystems
  • Kim, M., Lefcourt, A., Chen, Y., Tao, Y., 2005.
  • Automated detection of fecal contamination of apples based on multispectral fluorescence image fusion. Journal of Food Engineering, 71, 85–91. Kleynen, O., Leemans, V., Destain, M., 2005.
  • Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering, 69, 41–49. Korkmaz, N., 2008. Omurga şekil bozukluğu analiz ve teşhisine yönelik yazılım geliştirme, Doktora Tezi, 43s, İstanbul.
  • Leemans, V., Magein, H., Destain, M., 1998. Defects segmentation on ’Golden Delicious’ apples by using colour machine vision. Computers and Electronics in Agriculture, 20, 117–130.
  • Leemans, V., Magein, H., Destain, M., 2002. On-line fruit grading according to their external quality using machine vision. Biosystems Engineering, 83, 397– 40
  • Leemans, V., Destain, M., 2004. A real-time grading method of apples based on features extracted from defects. Journal of Food Engineering, 61, 83–89.
  • Özkan Y., 2008. Veri madenciliği yöntemleri. Papatya Yayınları, İstanbul.
  • Puchalski C., Gorzelany J., Zagula G., Brusewitz G., 200 Image analysis for apple defect detection. Teka Kom. Mot. Energ. Roln, 8, 197–205. Tonguç, G., 2007. Görüntü işleme teknikleri kullanılarak meyve tasnifi, Yüksek Lisans Tezi, 90s, Isparta.
  • Unay, D., Gosselin, B., 2002. Apple defect detection and quality classification with MLP-Neural Networks.
  • Proc. of Prorisc, Eindhoven, the Netherlands. Unay, D., Gosselin, B., 2007. Stem and calyx recognition on ’Jonagold’ apples by pattern recognition. Journal of Food Engineering, 78, 597– 60
  • Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M., Debeir, O., 2010. Automatic grading of bi- colored apples by multispectral machine vision.
  • Computers and Electronics in Agriculture, 75, 204- 2
  • Xiao-bo, Z., Jie-wen, Z., Yanxiao, L., Holmes, M., 2009.
  • In-line detection of apple defects using three color cameras system. Computers and Electronics in Agriculture, 2323, 1-6.
  • Xiao-bo, Z., Jie-wen, Z., Yanxiao, L., Holmes, M., 2010.
  • In-line detection of apple defects using three color cameras system. Computers and Electronics in Agriculture, 70(1), 129–134. Wen, Z., Tao, Y., 1999. Building a rule-based machine- vision system for defect inspection on apple sorting and packing lines. Expert Systems with Applications, 16, 307–313.

Real-Time Automatic Apple Classification

Yıl 2013, Cilt: 17 Sayı: 2, 31 - 38, 11.07.2014

Öz

Today, keeping and determining the quality of the food products is actually a problem. The quality control workers classify the fruits and vegetables according to their quality and properties by means of hands and eyes. However, this method does not provide the standard of quality and it is possible to occur incorrect classification. At the same time, there is a great loss in terms of time and labour force. In order to eliminate these cases, it is possible to categorize fruits quickly and in line with the standards depending upon a machine automatically. In this study, real-time marching band passing over the apples, size, color, class and weight determination were 95.5% Any performance. 0.5 seconds is the average time taken in recognition of an Apple

Kaynakça

  • Anonim, 2009. Eğirdir Bahçe Kültürleri Araştırma
  • Enstitüsü Sorumluluk Alanı. Eğirdir Bahçe Kültürleri Araştırma Enstitüsü. 14-15 s. Bennedsen, B., Peterson, D., Tabb, A., 2005.
  • Identifying defects in images of rotating apples. Computers and Electronics in Agriculture, 48, 92-102. Blasco, J., Aleixos, N., Moltó, E., 2003. Machine vision system for automatic quality grading of fruit.
  • Biosystams Engineering, 85, 415–423. Cetişli B., Kalkan H., 2011. Polynomial Curve fitting with varying real powers, Journal of Electronics and Electrical Engineering, 6(112), 117-122.
  • Chen, Y., Chao, K., Kim, M., 2002. Machine vision technology for agricultural applications. Computers and Electronics in Agriculture, 36, 173-191.
  • Johnsonbaugh E., Jost R., Gose S., 2009, Pattern recognition and image analysis, Phi Learning Private Limited.
  • Kavdir, I., Guyer, D.E., 2004. Comparison of artificial neural networks and statistical classifiers in apple sorting Engineering, 89, 331–344. features. Biosystems
  • Kim, M., Lefcourt, A., Chen, Y., Tao, Y., 2005.
  • Automated detection of fecal contamination of apples based on multispectral fluorescence image fusion. Journal of Food Engineering, 71, 85–91. Kleynen, O., Leemans, V., Destain, M., 2005.
  • Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering, 69, 41–49. Korkmaz, N., 2008. Omurga şekil bozukluğu analiz ve teşhisine yönelik yazılım geliştirme, Doktora Tezi, 43s, İstanbul.
  • Leemans, V., Magein, H., Destain, M., 1998. Defects segmentation on ’Golden Delicious’ apples by using colour machine vision. Computers and Electronics in Agriculture, 20, 117–130.
  • Leemans, V., Magein, H., Destain, M., 2002. On-line fruit grading according to their external quality using machine vision. Biosystems Engineering, 83, 397– 40
  • Leemans, V., Destain, M., 2004. A real-time grading method of apples based on features extracted from defects. Journal of Food Engineering, 61, 83–89.
  • Özkan Y., 2008. Veri madenciliği yöntemleri. Papatya Yayınları, İstanbul.
  • Puchalski C., Gorzelany J., Zagula G., Brusewitz G., 200 Image analysis for apple defect detection. Teka Kom. Mot. Energ. Roln, 8, 197–205. Tonguç, G., 2007. Görüntü işleme teknikleri kullanılarak meyve tasnifi, Yüksek Lisans Tezi, 90s, Isparta.
  • Unay, D., Gosselin, B., 2002. Apple defect detection and quality classification with MLP-Neural Networks.
  • Proc. of Prorisc, Eindhoven, the Netherlands. Unay, D., Gosselin, B., 2007. Stem and calyx recognition on ’Jonagold’ apples by pattern recognition. Journal of Food Engineering, 78, 597– 60
  • Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M., Debeir, O., 2010. Automatic grading of bi- colored apples by multispectral machine vision.
  • Computers and Electronics in Agriculture, 75, 204- 2
  • Xiao-bo, Z., Jie-wen, Z., Yanxiao, L., Holmes, M., 2009.
  • In-line detection of apple defects using three color cameras system. Computers and Electronics in Agriculture, 2323, 1-6.
  • Xiao-bo, Z., Jie-wen, Z., Yanxiao, L., Holmes, M., 2010.
  • In-line detection of apple defects using three color cameras system. Computers and Electronics in Agriculture, 70(1), 129–134. Wen, Z., Tao, Y., 1999. Building a rule-based machine- vision system for defect inspection on apple sorting and packing lines. Expert Systems with Applications, 16, 307–313.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orhan Er Bu kişi benim

Bayram Çetişli Bu kişi benim

M. Mahir Sofu Bu kişi benim

M. Cengiz Kayacan Bu kişi benim

Yayımlanma Tarihi 11 Temmuz 2014
Yayımlandığı Sayı Yıl 2013 Cilt: 17 Sayı: 2

Kaynak Göster

APA Er, O., Çetişli, B., Sofu, M. M., Kayacan, M. C. (2014). Gerçek Zamanlı Otomatik Elma Tasnifleme. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), 31-38.
AMA Er O, Çetişli B, Sofu MM, Kayacan MC. Gerçek Zamanlı Otomatik Elma Tasnifleme. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Mart 2014;17(2):31-38.
Chicago Er, Orhan, Bayram Çetişli, M. Mahir Sofu, ve M. Cengiz Kayacan. “Gerçek Zamanlı Otomatik Elma Tasnifleme”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 17, sy. 2 (Mart 2014): 31-38.
EndNote Er O, Çetişli B, Sofu MM, Kayacan MC (01 Mart 2014) Gerçek Zamanlı Otomatik Elma Tasnifleme. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 17 2 31–38.
IEEE O. Er, B. Çetişli, M. M. Sofu, ve M. C. Kayacan, “Gerçek Zamanlı Otomatik Elma Tasnifleme”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 17, sy. 2, ss. 31–38, 2014.
ISNAD Er, Orhan vd. “Gerçek Zamanlı Otomatik Elma Tasnifleme”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 17/2 (Mart 2014), 31-38.
JAMA Er O, Çetişli B, Sofu MM, Kayacan MC. Gerçek Zamanlı Otomatik Elma Tasnifleme. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2014;17:31–38.
MLA Er, Orhan vd. “Gerçek Zamanlı Otomatik Elma Tasnifleme”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 17, sy. 2, 2014, ss. 31-38.
Vancouver Er O, Çetişli B, Sofu MM, Kayacan MC. Gerçek Zamanlı Otomatik Elma Tasnifleme. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2014;17(2):31-8.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.