BibTex RIS Kaynak Göster

Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels

Yıl 2016, Cilt: 20 Sayı: 3, 460 - 467, 18.11.2016
https://doi.org/10.19113/sdufbed.53790

Öz

In this work, the characterization and drug release behavior of 5-fluorouracil-loaded glutaraldehyde-crosslinked chitosan hydrogels have been studied. The structure of the hydrogels were investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, also their properties were compared with those of the drug-unloaded hydrogels. The equilibrium swelling studies and drug release profiles were determined at 37°C in two different pHs (2.1 and 7.4). The results indicated that increased chitosan concentration in the hydrogel decreased the swelling and drug release values and the hydrogels released nearly the same amount of 5-fluorouracil in both acidic (~59%) and basic medium (~50%).

Kaynakça

  • [1] Pulat, M., Asıl, D. 2009. Fluconazole Release Through Semi-Interpenetrating Polymer Network Hydrogels Based on Chitosan, Acrylic Acid, and Citraconic Acid. Journal of Applied Polymer Science, 113, 2613-2619.
  • [2] Pulat, M., Akalın, G. O., Karahan, N. D. 2014. Lipase Release Through Semi-Interpenetrating Polymer Network Hydrogels Based on Chitosan, Acrylamide, and Citraconic Acid. Artificial Cells, Nanomedicine and Biotechnology, 42, 121-127.
  • [3] Mansur, H. S., Orefice, R. L., Mansur, A. A. P. 2004. Characterization of Poly(Vinyl Alcohol)/Poly(Ethylene Glycol) Hydrogels and PVA-derived Hybrids by Small-Angle X-ray Scattering and FTIR Spectroscopy. Polymer, 45 (21), 7193-7202.
  • [4] Peppas, N. A., Bures, P., Leobandung, W., Ichikawa, H. 2000. Hydrogels in Pharmaceutical Formulations. European Journal of Pharmaceutics and Biopharmaceutics, 50 (1), 27-46.
  • [5] Özbaş Z., Gürdağ G. 2015. Swelling Kinetics, Mechanical Properties, and Release Characteristics of Chitosan-Based Semi-IPN Hydrogels. Journal of Applied Polymer Science, 132 (16), 41886.
  • [6] Bhattarai, N., Gunn, J., Zhang, M. 2010. Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery. Advanced Drug Delivery Reviews, 62 (1), 83-99.
  • [7] Dutta, P. K., Dutta, J., Tripathi, V. S. 2004. Chitin and Chitosan: Chemistry, Properties and Applications. Journal of Scientific and Industrial Research, 63, 20-31.
  • [8] Sarmad, S., Yenici, G., Gürkan, K., Keçeli, G., Gürdağ, G. 2013. Electric Field Responsive Chitosan–Poly (N, N-dimethyl acrylamide) Semi-IPN Gel Films and Their Dielectric, Thermal and Swelling Characterization. Smart Materials and Structures, 22 (5), 055010.
  • [9] Wu, L. Q., Gadre, A. P., Yi, H., Kastantin, M. J., Rubloff, G. W., Bentley, W. E., Payne, G. F., Ghodssi, R. 2002. Voltage-Dependent Assembly of The Polysaccharide Chitosan onto An Electrode Surface. Langmuir, 18 (22), 8620-8625.
  • [10] Raafat, D., Sahl, H. G. 2009. Chitosan and Its Antimicrobial Potential–A Critical Literature Survey. Microbial Biotechnology, 2 (2), 186-201.
  • [11] Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., Gurny, R. 2004. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics, 57 (1), 19-34.
  • [12] Baroni, P., Vieira, R. S., Meneghetti, E., Silva, M. G. C., Beppu, M.M. 2008. Evaluation of Batch Adsorption of Chromium Ions on Natural and Crosslinked Chitosan Membranes. Journal of Hazardous Materials, 152 (3), 1155-1163.
  • [13] Vieira, R. S., Beppu, M.M. 2006. Interaction of Natural and Crosslinked Chitosan Membranes with Hg (II) Ions. Colloid Surface A, 279, 196-207.
  • [14] Wan Ngah, W. S., Endud, C. S., Mayanar, R. 2002. Removal of Copper (II) Ions from Aqueous Solution onto Chitosan and Cross-linked Chitosan Beads. Reactive and Functional Polymers, 50 (2), 181-190.
  • [15] Chen, A. H., Liu, S. C., Chen, C. Y., Chen, C. Y. 2008. Comparative Adsorption of Cu (II), Zn (II), and Pb (II) Ions in Aqueous Solution on The Crosslinked Chitosan with Epichlorohydrin. Journal of Hazardous Materials, 154 (1-3), 184-191.
  • [16] Brack, H. P., Tirmizi, S. A., Risen, W.M. 1997. A Spectroscopic and Viscometric Study of The Metal Ion-Induced Gelation of The Biopolymer Chitosan. Polymer, 38 (10), 2351-2362.
  • [17] Du, W. L., Niu, S. S., Xu, Y. L., Xu, Z. R., Fan, C. L. 2009. Antibacterial Activity of Chitosan Tripolyphosphate Nanoparticles Loaded with Various Metal Ions. Carbohydrate Polymers, 75 (3), 385-389.
  • [18] Zhao, Q. S., Ji, Q. X., Xing, K., Li, X. Y., Liu, C. S., Chen, X. G. 2009. Preparation and Characteristics of Novel Porous Hydrogel Films Based on Chitosan and Glycerophosphate. Carbohydrate Polymers, 76 (3), 410-416.
  • [19] Wu, X., Black, L., Santacana-Laffitte, G., Patrick, C. W. 2007. Preparation and Assessment of Glutaraldehyde‐Crosslinked Collagen–Chitosan Hydrogels for Adipose Tissue Engineering. Journal of Biomedical Materials Research, 81A (1), 59-65.
  • [20] Zhang, J., Zhou, X., Wang, D., Wang, Y., Zhou, X., Wang, H., Li, Q., Tan, S. 2013. Studies on The Co-immobilized GOD/CAT on Cross-linked Chitosan Microsphere Modified by Lysine. Journal of Molecular Catalysis B-Enzymatic, 97, 80-86.
  • [21] Roberts, G. A. F., Taylor, K. E. 1989. Macromolecular Chemistry and Physics, 190 (5), 951-960.
  • [22] Argüelles-Monal, W., Goycoolea, F. M., Peniche, C., Higuera-Ciapara, I. 1998. Rheological Study of The Chitosan/Glutaraldehyde Chemical Gel System. Polymer Gels and Networks, 6 (6), 429-440.
  • [23] Monteiro Jr, O. A. C., Airoldi, C. 1999. Some Studies of Crosslinking Chitosan–Glutaraldehyde Interaction in A Homogeneous System. International Journal of Biological Macromolecules, 26 (2-3), 119-128.
  • [24] Mundargi, R. C., Rangaswamy, V., Aminabhavi, T. M. 2010. A Novel Method to Prepare 5-fluorouracil, An Anti-Cancer Drug, Loaded Microspheres from Poly (N-vinyl caprolactam-co-acrylamide) and Controlled Release Studies. Designed Monomers and Polymers, 13 (4), 325-336.
  • [25] Babu, V. R., Sairam, M., Hosamani, K. M., Aminabhavi, T. M. 2006. Preparation and In-vitro Release of Chlorothiazide Novel pH-Sensitive Chitosan-N, N′-dimethylacrylamide Semi-Interpenetrating Network Microspheres. International Journal of Pharmaceutics, 325 (1-2), 55-62.
  • [26] Sekhar, E. C., Krishna Rao, K. S. V., Raju, R. R. 2011. Chitosan/Guargum-g-Acrylamide Semi IPN Microspheres for Controlled Release Studies of 5-Fluorouracil. Journal of Applied Pharmaceutical Science, 01 (08), 199-204.
  • [27] Ermis, D., Yuksel, A. 1999. Preparation of spray-dried microspheres of indomethacin and examination of the effects of coating on dissolution rates. Journal of Microencapsulation, 16 (3), 315-324.
  • [28] Krishna Rao, K. S. V., Chung, I., Reddy, K. M., Ha, C. S. 2009. PMMA‐Based Microgels for Controlled Release of An Anticancer Drug. Journal of Applied Polymer Science, 111 (2), 845-853.
  • [29] Bhat, S. K., Keshavayya, J., Kulkarni, V. H., Reddy, V. K. R., Kulkarni, P. V., Kulkarni, A.R. 2012. Preparation and Characterization of Crosslinked Chitosan Microspheres for The Colonic Delivery of 5‐fluorouracil. Journal of Applied Polymer Science, 125 (3), 1736-1744.
  • [30] Mirzaei, B. E., Ramazani, S. A. A., Shafiee, M., Danaei, M. 2013. Studies on Glutaraldehyde Crosslinked Chitosan Hydrogel Properties for Drug Delivery Systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 62 (11), 605-611.
  • [31] Agnihotri, S. A., Aminabhavi, T. M. 2004. Controlled Release of Clozapine through Chitosan Microparticles Prepared by A Novel Method. Journal of Controlled Release, 96 (2), 245-259.
  • [32] Denkbaş, E. B., Seyyal, M., Pişkin, E. 2000. Implantable 5-fluorouracil Loaded Chitosan Scaffolds Prepared by Wet Spinning. Journal of Membrane Science, 172 (1-2), 33-38.
  • [33] Kulkarni, V. H., Kulkarni, P. V., Keshavayya, J. 2007. Glutaraldehyde‐Crosslinked Chitosan Beads for Controlled Release of Diclofenac Sodium. Journal of Applied Polymer Science, 103 (1), 211-217.
  • [34] Wang, D. S., Li, J. G., Li, H. P., Tang, F. Q. 2009. Preparation and Drug Releasing Property of Magnetic Chitosan-5-fluorouracil Nano-particles. Transactions of Nonferrous Metals Society of China, 19 (5), 1232-1236.
  • [35] Gupta, K. C., Kumar, M. N. V. R. 2000. Drug Release Behavior of Beads and Microgranules of Chitosan. Biomaterials, 21 (11), 1115-1119.
  • [36] Shu, X. Z., Zhu, K. J., Song, W. 2001. Novel pH-Sensitive Citrate Cross-linked Chitosan Film for Drug Controlled Release. International Journal of Pharmaceutics, 212 (1), 19-28.
  • [37] Shu, X. Z., Zhu, K. J. 2002. Controlled Drug Release Properties of Ionically Cross-linked Chitosan Beads: The Influence of Anion Structure. International Journal of Pharmaceutics, 233 (1-2), 217-225.
  • [38] Hejazi, R., Amiji, M. 2002. Stomach-Specific Anti-H. pylori Therapy. I: Preparation and Characterization of Tetracyline-Loaded Chitosan Microspheres. International Journal of Pharmaceutics, 235 (1-2), 87-94.
  • [39] Kasaai, M. R. 2008. Calculation of Viscometric Constants, Hydrodynamic Volume, Polymer–Solvent Interaction Parameter, and Expansion Factor for Three Polysaccharides with Different Chain Conformations. Carbohydrate Research, 343 (13), 2266-2277.
  • [40] Baskar, D., Kumar, S. T. S. 2009. Effect of Deacetylation Time on The Preparation, Properties and Swelling Behavior of Chitosan Films. Carbohydrate Polymers, 78 (4), 767-772.
  • [41] Perrin, D. D., Dempsey, B., 1974. Buffers for pH and Metal Ion Control, Ch. 5, Chapman and Hall, London.
  • [42] Quijada-Garrido, I., Iglesias-Gonzalez, V., Mazon-Arechederra, J. M., Barrales-Rienda, J. M. 2007. The Role Played by The Interactions of Small Molecules with Chitosan and Their Transition Temperatures. Glass-Forming Liquids: 1, 2, 3-propantriol (glycerol). Carbohydrate Polymers, 68 (1), 173-186.
  • [43] Wang, N., Chen, Y., Kim, J. 2007. Electroactive Paper Actuator Made with Chitosan‐Cellulose Films: Effect of Acetic Acid. Macromolecular Materials and Engineering, 292 (6), 748-753.
  • [44] Hemant, K. S. Y., Shivakumar, H. G. 2010. Development of Chitosan Acetate Films for Transdermal Delivery of Propranolol Hydrochloride. Tropical Journal of Pharmaceutical Research, 9 (2), 197-203.
  • [45] Milosavljevic, N. B., Kljajevic, L. M., Popovic, I. G., Filipovic, J. M., Kalagasidis Krusic, M. T. 2010. Chitosan, Itaconic Acid and Poly (Vinyl Alcohol) Hybrid Polymer Networks of High Degree of Swelling and Good Mechanical Strength. Polymer International, 59 (5), 686-694.
  • [46] Olukman, M., Sanlı, O., Solak, E. K. 2012. Release of Anticancer Drug 5-Fluorouracil from Different Ionically Crosslinked Alginate Beads. Journal of Biomaterials and Nanobiotechnology, 3, 469-479.
  • [47] Mandal, S., Basu, S. K., Sa, B. 2010. Ca2+ Ion Cross-linked Interpenetrating Network Matrix Tablets of Polyacrylamide-grafted-Sodium Alginate and Sodium Alginate for Sustained Release of Diltiazem Hydrochloride. Carbohydrate Polymers, 82 (3), 867-873.
  • [48] Cervera, M. F., Heinämäki, J., Krogars, K., Jörgensen, A. C., Karjalainen, M., Colarte, A. I., Yliruusi, J. 2004. Solid-State and Mechanical Properties of Aqueous Chitosan-Amylose Starch Films Plasticized with Polyols. AAPS PharmSciTech, 5, 1-6.
  • [49] Dhanikula, A. B., Panchagnula, R. 2004. Development and Characterization of Biodegradable Chitosan Films for Local Delivery of Paclitaxel. The AAPS Journal, 6, 88-99.
  • [50] Mi, F. L., Sung, H. W., Shyu, S. S. 2001. Release of Indomethacin from A Novel Chitosan Microsphere Prepared by A Naturally Occurring Crosslinker: Examination of Crosslinking and Polycation–Anionic Drug Interaction. Journal of Applied Polymer Science, 81, 1700-1711.
  • [51] Nagarwal, R. C., Singh, P. N., Kant, S., Maiti, P., Pandit, J. K. 2011. Chitosan Nanoparticles of 5-fluorouracil for Pphthalmic Delivery: Characterization, In-vitro and In-vivo Study. Chem. Pharm. Bull., 59 (2), 272-278.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Zehra Özbaş

Gülten Gürdağ Bu kişi benim

Yayımlanma Tarihi 18 Kasım 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 20 Sayı: 3

Kaynak Göster

APA Özbaş, Z., & Gürdağ, G. (2016). Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(3), 460-467. https://doi.org/10.19113/sdufbed.53790
AMA Özbaş Z, Gürdağ G. Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels. SDÜ Fen Bil Enst Der. Aralık 2016;20(3):460-467. doi:10.19113/sdufbed.53790
Chicago Özbaş, Zehra, ve Gülten Gürdağ. “Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 3 (Aralık 2016): 460-67. https://doi.org/10.19113/sdufbed.53790.
EndNote Özbaş Z, Gürdağ G (01 Aralık 2016) Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 3 460–467.
IEEE Z. Özbaş ve G. Gürdağ, “Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels”, SDÜ Fen Bil Enst Der, c. 20, sy. 3, ss. 460–467, 2016, doi: 10.19113/sdufbed.53790.
ISNAD Özbaş, Zehra - Gürdağ, Gülten. “Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/3 (Aralık 2016), 460-467. https://doi.org/10.19113/sdufbed.53790.
JAMA Özbaş Z, Gürdağ G. Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels. SDÜ Fen Bil Enst Der. 2016;20:460–467.
MLA Özbaş, Zehra ve Gülten Gürdağ. “Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 3, 2016, ss. 460-7, doi:10.19113/sdufbed.53790.
Vancouver Özbaş Z, Gürdağ G. Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels. SDÜ Fen Bil Enst Der. 2016;20(3):460-7.

e-ISSN: 1308-6529