BibTex RIS Kaynak Göster

Green's Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument

Yıl 2017, Cilt: 21 Sayı: 1, 266 - 278, 29.03.2017
https://doi.org/10.19113/sdufbed.67047

Öz

In this paper, damped spring-mass systems with generalized piecewise constant argument and with functional dependence on generalized piecewise constant argument are considered. These spring-mass systems have piecewise constant forces of the forms $Ax(\gamma(t))$ and $Ax(\gamma(t))+h(t,x_{t},x_{\gamma(t)})$, respectively. These spring-mass systems are examined without reducing them into discrete equations. While doing this examination, we make use of the results which have been obtained for differential equations with functional dependence on generalized piecewise constant argument in \cite{2}. Sufficient conditions for the existence and uniqueness of solutions of the spring-mass system with functional dependence on generalized piecewise constant argument are given. The periodic solution of the spring-mass system which has functional force is created with the help of the Green's function, and its uniqueness is proved. The obtained theoretical results are illustrated by an example. This illustration shows that the damped spring-mass systems with functional dependence on generalized piecewise constant argument with proper parameters has a unique periodic solution which can be expressed by Green's function.

Kaynakça

  • [1] Akhmet, M. U. 2014. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications On Pure And Applied Analysis, 13(2)(2014), 929-947.
  • [2] Gopalsamy, K. 1992. Stability and Oscillation in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Dordrecht.
  • [3] Györi, I., Ladas, G. 1991. Oscillation Theory of Delay Differential Equations with Applications. Oxford University Press, New York.
  • [4] Diblik, J. 1998. Behaviour of solutions of linear differential equations with delay. Archivum Mathematicum (Brno), 34(1998), 31-47.
  • [5] Atay, F. M. 2001. Periodic Solutions of Delay-Differential Equations with a Restorative Condition. Preprint 1998. Final version appeared in Nonlinear Analysis TMA, 45(5)(2001), 555-576.
  • [6] Akhmet, M. U. 2011. Nonlinear Hybrid Continuous/ Discrete Time Models. Atlantis Press, Amsterdam, Paris.
  • [7] Akhmet, M. U. 2008. Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal., 68(2008), 794-803.
  • [8] Yuan, R. 2002. The existence of almost periodic solutions of retarded differential equations with piecewise constant argument. Nonlinear Analysis, Theory, Methods and Applications, 48(2002), 1013-1032.
  • [9] Cooke, K. L., Wiener, J. 1984. Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl., 99(1984), 265-297.
  • [10] Aftabizadeh, A. R., Wiener, J. 1988. Oscillatory and periodic solutions for systems of two first order linear differential equations with piecewise constant argument. Appl. Anal., 26(1988), 327-338.
  • [11] Wang, G. 2007. Periodic solutions of a neutral differential equation with piecewise constant arguments. J. Math. Anal. Appl., 326(2007), 736-747.
  • [12] Xia, Y., Huang, Z., Han, M. 2007. Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument. J. Math. Anal. Appl., 333(2007), 798-816.
  • [13] Seifert, G. 2000. Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence. J. Differential Equations, 164(2000), 451-458.
  • [14] Dai, L., Singh, M. C. 1994. On oscillatory motion of spring-mass systems subjected to piecewise constant forces. Journal of Sound and Vibration, 173(2)(1994), 217-231.
  • [15] Shen, J. H., Stavroulakis, I. P. 2000. Oscillatory and nonoscillatory delay equation with piecewise constant argument. J. Math. Anal. Appl., 248(2000), 385-401.
  • [16] Wiener, J., Lakshmikantham, V. 2000. A damped oscillator with piecewise constant time delay. Nonlinear Stud., 7(2000), 78-84.
  • [17] Wiener, J., Cooke, K. L. 1989. Oscillations in systems of differential equations with piecewise constant argument. J. Math. Anal. Appl., 137(1989), 221-239.
  • [18] Aftabizadeh, A. R.,Wiener, J., Xu, J.-M. 1987. Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. Amer. Math. Soc., 99(1987), 673-679.
  • [19] Wang, Y., Yan, J. 1997. Necessary and sufficient condition for the global attractivity of the trivial solution of a delay equation with continuous and piecewise constant arguments. Appl. Math. Lett., 10(1997), 91-96.
  • [20] Cooke, K. L., Wiener, J. 1991. A survey of differential equation with piecewise continuous argument. Lecture Notes in Math., Springer, Berlin, 1475(1991), 1-15.
  • [21] Akhmet, M. U. 2006. On the integral manifolds of the differential equations with piecewise constant argument of generalized type. Proceedings of the Conference on Differential and Difference Equations at the Florida Institute of Technology, August 1-5, 2005, Melbourne, Florida, Editors: Agarval, R. P. and Perera, K., Hindawi Publishing Corporation, 11-20.
  • [22] Akhmet, M. U. 2007. On the reduction principle for differential equations with piecewise constant argument of generalized type. J.Math. Anal. Appl., 336(2007), 646-663.
  • [23] Akhmet, M. U. 2007. Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal., 66(2007), 367-383.
  • [24] Akhmet, M. U., Buyukadali, C. 2010. Differential equations with a state-dependent piecewise constant argument. Nonlinear Analysis: TMA, 72(2010), 4200-4210.
  • [25] Akhmet, M. U., Buyukadali, C. 2008. Periodic solutions of the system with piecewise constant argument in the critical case. Comput. Math. Appl., 56(2008), 2034-2042.
  • [26] Akhmet, M. U., Arugaslan, D. 2009. Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete Contin. Dyn. Syst., 25(2009), 457-466.
  • [27] Akhmet, M. U., Arugaslan, D., Yılmaz, E. 2011. Method of Lyapunov functions for differential equations with piecewise constant delay. J. Comput. Appl. Math., 235(2011), 4554-4560.
  • [28] Akhmet, M. U., Arugaslan, D., Yılmaz, E. 2010. Stability analysis of recurrent neural networks with piecewise constant argument of generalized type. Neural Networks, 23(2010), 805-811.
  • [29] Bao, G., Wen, S., Zeng, Zh. 2012. Robust stability analysis of interval fuzzy CohenGrossberg neural networks with piecewise constant argument of generalized type. Neural Networks, 33(2012), 32-41.
  • [30] Wiener, J. 1993. Generalized Solutions of Functional Differential Equations. World Scientific, Singapore.
  • [31] Cheng, S. S., Zhang, G. 2001. Existence of positive periodic solutions for non-autonomous functional differential equations. Electron. J. Differential Equations, 59(2001), 1-8.
  • [32] Liu, X.-L., Li, W.-T. 2004. Existence and uniqueness of positive periodic solutions of functional differential equations. J. Math. Anal. Appl., 293(2004), 28-39.
  • [33] Wang, H. 2004. Positive periodic solutions of functional differential equations. J. Differential Equations, 202(2004), 354-366.
  • [34] Triana, C. A., Fajardo, F. 2013. Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter. Revista Brasileira de Ensino de F´ısica, 35(4)(2013), 4305.
  • [35] French, A. P. 1964. Vibrations andWaves.W.W. Norton and Company. Inc. New York, the United States of America.
  • [36] Sears, F. W. 1969. A demonstration of the springmass correction. Am. J. Phys., 37(1969), 645.
  • [37] McDonald, F. A. 1980. Deceptively simple harmonic motion: A mass on a spiral spring. Am. J. Phys., 48(1980), 189.
  • [38] Pellicer, M., Sol`a-Morales, J. 2004. Analysis of a viscoelastic spring-mass model. J. Math. Anal. Appl., 294(2004), 687-698.
  • [39] Blickhan, R. 1989. The spring-mass model for running and hopping. J. Biomechanics, 22(11/12)(1989), 1217-1227.
  • [40] Rabita, G., Couturier, A., Dorel, S., Hausswirth, C., Meur, Y.-L. 2013. Changes in spring-mass behavior and muscle activity during an exhaustive run at˙VO2max. Journal of Biomechanics, 46(2013), 2011-2017.
  • [41] Cao, Z. J. 2009. One and Two-Dimensional Mass Spring Computational Model for Phononic Band Gap Analysis. University of Waterloo, Applied Science in Electrical and Computer Engineering, Master Thesis, 104s, Waterloo, Ontario, Canada.
  • [42] Geyer, H., Seyfarth, A., Blickhan, R. 2005. Springmass running: simple approximate solution and application to gait stability. Journal of Theoretical Biology, 232(2005), 315-328.
  • [43] Hale, J. 1971. Functional Differential Equations. Springer, New-York
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Duygu Aruğaslan

Nur Cengiz

Yayımlanma Tarihi 29 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 21 Sayı: 1

Kaynak Göster

APA Aruğaslan, D., & Cengiz, N. (2017). Green’s Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 266-278. https://doi.org/10.19113/sdufbed.67047
AMA Aruğaslan D, Cengiz N. Green’s Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2017;21(1):266-278. doi:10.19113/sdufbed.67047
Chicago Aruğaslan, Duygu, ve Nur Cengiz. “Green’s Function and Periodic Solutions of a Spring-Mass System in Which the Forces Are Functionally Dependent on Piecewise Constant Argument”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, sy. 1 (Nisan 2017): 266-78. https://doi.org/10.19113/sdufbed.67047.
EndNote Aruğaslan D, Cengiz N (01 Nisan 2017) Green’s Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 1 266–278.
IEEE D. Aruğaslan ve N. Cengiz, “Green’s Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 21, sy. 1, ss. 266–278, 2017, doi: 10.19113/sdufbed.67047.
ISNAD Aruğaslan, Duygu - Cengiz, Nur. “Green’s Function and Periodic Solutions of a Spring-Mass System in Which the Forces Are Functionally Dependent on Piecewise Constant Argument”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/1 (Nisan 2017), 266-278. https://doi.org/10.19113/sdufbed.67047.
JAMA Aruğaslan D, Cengiz N. Green’s Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2017;21:266–278.
MLA Aruğaslan, Duygu ve Nur Cengiz. “Green’s Function and Periodic Solutions of a Spring-Mass System in Which the Forces Are Functionally Dependent on Piecewise Constant Argument”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy. 1, 2017, ss. 266-78, doi:10.19113/sdufbed.67047.
Vancouver Aruğaslan D, Cengiz N. Green’s Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2017;21(1):266-78.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.