Araştırma Makalesi
BibTex RIS Kaynak Göster

Nitro Piridin Halkasının Nükleofilik Sübstitüsyonundan Elde Edilen İki Yeni Enerjik Malzemenin Termal İncelenmesi, Termokinetik Analizi ve Antimikrobiyal Aktivitesi

Yıl 2018, Cilt: 22 Sayı: 3, 1262 - 1275, 20.09.2018
https://doi.org/10.19113/sdufenbed.431116

Öz


2-Kloro-3,5-dinitropiridin, hidrazin ve 3-amimopirazol
ile tepkimeye sokuldu ve iki yeni azotça zengin enerjik madde elde edildi,
N(3,5-dinitropiridin-2-yl) hidrazin (I), ve
N(3,5-dinitropiridin-2-yl),3-aminopirazol (II). Bu maddeler, element analizi,
kütle spektroskopi, IR spektroskopi, 1HNMR ve 13CNMR
yöntemleri ile karakterize edildi. Bu maddeler TG ile incelendi ve termal
parçalanma mekanizmaları yorumlandı. Bunun yanında izotermal ve nonizotermal
kinetik analiz yöntemleriyle çalışıldı ve termal parçalanma tepkimelerinin
aktivasyon enerjileri, Arheniuss pre-eksponansiyal faktörleri bulundu, bu
değerler kullanılarak parçalanma tepkimelerinin termodinamik parametreleri
hesaplandı. Termal parçalanma tepkimelerinde ara ürünün nitrofuroksan halkası
olduğu sonucuna varıldı. Gaussian 09 yazılımı içindeki algoritmalar
kullanılarak iki enerjik maddenin standart formasyon entalpisi değerleri
hesaplandı.  Bu değerler kullanılarak
termal parçalanma tepkimesinin tepkime entalpisi değeri Hess yasası uyarınca
hesaplandı ve bulunan sonuç Diferansiyel Taramalı Kalorimetre yönteminden elde
edilen değer ile karşılaştırıldı, deneysel ve teorik sonuçların birbirinden
uzak olmadığı görüldü. Bunlara ek olarak azotça zengin enerjik maddelerin
antimikrobiyel etkileri 5 farklı bakteriye karşı,
antifungal
etkileri de bir mantar türüne karşı ölçüldü. Azotça zengin
olduklarından bakterilerin bu maddelerdeki azotu besin olarak kullandığı
belirlendi.

Kaynakça

  • [1] Huheey JF, The electronegativity of multiply bonded groups, J. Phys. Chem. 1966;70:2086-91.
  • [2] Agrawal JP, Surve RN, Sonawane SH. Some aromatic nitrate esters:Synthesis, Structural aspects,thermal and explosive properties. J.Hazard. Mat. 2000;77:11-31.
  • [3] Agrawal JP,Hodgson RD. Organic Chemistry of explosives. Chichester :Wiley;2007. P.158-62.
  • [4] Yiğiter AÖ, Atakol MK, Aksu ML, Atakol O. Thermal characterization and theoritical and experimental comparison of picryl chloride derivatives of heterocyclic energetic compounds. J. Therm. Anal. Cal. 2017;127:2199-2123.
  • [5] Badgujar D.M, Talawar M.B, . Harlapur S.F, Asthana S.N, Mahulikar P.P. Synthesis, characterization and evaluation of 1,2-bis(2,4,6-trinitrophenyl)hydrazine. J. Hazard. Mat.2009;172:276-279.
  • [6] Agrawal J.P. Past,Present & Future of Thermally Stable Explosives. Central Eur. J. Energ. Mat. 2013;9:273-290.
  • [7] Chiato ZL, Klapötke TM, Mieskes F, Stierstörfer J, Weyrauther M. (Picrylamino)-1,2,4-triazole Derivatives-Thermally stabile explosives, Eur. J. Inorg. Chem. 2016;956-62.
  • [8] Agrawal J.P. High Energy Materials. Wiley-VCH Verlag GmbH . 2010;93-95.
  • [9] Klapötke T.M. Chemsitry of High-Energy Materials. Walter de Gruyter. 2012.pp.141-61.
  • [10] Tao GH, Parrish DA, Shreeve JM. Nitrogen rich 5-(1-Methylhydrazinyl)tetrazole and its copper and siver complexes. Inorg. Chem. 2012;51:5305-12.
  • [11] Politzer P, Murray J. S. Decomposition, Crystal and Molecular Properties. Energetic Materials. Amsterdam.2003;Part 1:411-416.
  • [12] Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS. Environmentally compatible next generation green energetic materials. J. Hazard. Mat. 2009;161:589-607.
  • [13] Bailey A.S, Case J.R. 4:6-dinitrobenzofuroxan, nitrobenzodifuroxan and benzotrifuroxan: A new series of complex-forming reagents for aromatic hydrocarbons. Tetrahedron 1958;3:113-131.
  • [14] Reddy G.O, Murall B.K.M, Chotterjee A.K. Thermal study on picryl azide (2-azido-1,3,5-trinitrobenzene) decomposition using simultaneous thermogravimetry and differential scanning calorimetry. Propellants, Explosives, Pyrotechnics. 1983;8:29-33.
  • [15] Kehler J, Püschl A, Dahl O. Improved Syntheses of 1-Hydroxy-4-nitro-6-trifluoromethylbenzotriazole and 1-Hydroxy-4,6-dinitrobenzotriazole. Acta Chim. Scandinavica 1996;50:1171-73.
  • [16] Özkaramete, E, Şenocak N, K. İnal E.K, Öz S. Svoboda I, Atakol O. Experimental and computational studies on the thermal degradation of nitroazidobenzenes, propellants, explosives, pyrotechnics. 2013;38:113-119.
  • [17] Cardillo P, Gigante L, Lunghi A, Zanirato P. Revisiting the thermal decomposition of five ortho-substituted phenyl azides by calorimetric technics, J. Therm. Anal. Cal. 2010;100:191-198.
  • [18] Shremetev A.B, Aleksandrova N.S, Ignat N.V, Schulte M. Straightforward one-pot synthesis of benzofuroxans from o-halonitrobenzenes in Ionic Liquids. Mendeleev Comm.2012;22:95-97.
  • [19] Brown ME. Introduction to Thermal analysis. Kluwer Academic Publishers, 2001;p.206.
  • [20] Kraynikova A, Rotaru A, Györyova K, Homzova K, Manolea HO, Kavarova J, Hudecova D. Thermal behaviour and antimicrobial assay of some new zinc(II) 2-aminobenzoate complex compound with bioactive ligands. J. Therm. Anal. Cal. 2015;120:73-83.
  • [21] Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B. Comparative investigation fort he determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J. Therm. Anal. Cal.2017;129:1201-13.
  • [22] Sarada K, Muraleedharan K. Effect of addition of silver on the thermal decomposition kinetics of copper oxalate. J. Therm. Anal. Cal. 2016;123:643-51.
  • [23] Kullyakool S, Siriwong K, Noisong P, Danvirutai C. Kinetic triplet evaluation of a complicated dehyration of Co3(PO4)2.8H2O using the deconvolution and simlified master plots combined with nonlineer regression. J. Therm. Anal. Cal. 2017;127:1963-74.
  • [24] Suekkhayad A, Noisong P, Danvirutai C. Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2.H2O precursor. J. Therm. Anal. Cal. 2017;129:123-34.
  • [25] Moine EC, Bouamoud R, El Hamidi A, Khachani M, Halim M, Arsalane S. Mineralogical characterization and non-isothermal pyrolysis kinetics of Moroccan Rif oil shale. J. Therm. Anal. Cal. 2018;131:993-1004.
  • [26] Pouretedal HR, Mousavi SL. Study of the ratio of fuel to oxidant on the kinetic of ignition reaction of Mg/Ba(NO3)2 and Mg/Sr(NO3)2 pyrotechnics by non-isothermal TG/DSC technique. J. Therm. Anal. Cal. 2018; DOI:10.1007/s10973-018-7028
  • [27] Jarayaman K, Kök MV, Gökalp İ. Combustion properties and kinetics of different biomass samples using TG-MS technique. J. Therm. Anal. Cal. 2017;127:1361-70.
  • [28] Pouretedal HR, Damiri S, Ravanbod M, Hagsdost M, Masoudi S. The kinetic of thermal decomposition of PETN, Pentastite and Pentolite by TG/DTA non-isothermal methods. J. Therm. Anal. Cal. 2017;129:521-29.
  • [29] Ravanbod M, Pouretedal HR. Catalytic effect of Fe2O3, Mn2O3 and TiO2 nanoparticles on thermal decomposition of potassium nitrate. J. Therm. Anal. Cal. 2016;124:1091-98.
  • [30] Koga N. Qzawa’s kinetic method for analyzing thermoanalytical curves. J. Therm. Anal. Cal. 2013;113:1527-41.
  • [31] Abdel-Kader NS, Amin RM, El-Ansary AI. Complex of Schiff base of benzopyran-4-one derivative. J. Therm. Anal. Cal. 2016;123:1695-1706.
  • [32] Naktiyok J, Bayrakçeken H, Özer AK, Gülaboğlu MŞ. Investigation of combustion kinetics uf Umutbaca-lignite by thermal analysis technique. J. Therm. Anal. Cal. 2017;129:531-39.
  • [33] Ganeshan G, Shadangi KP, Mohanty K. Degredation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephatalide (PET) using Coats-Redfern method. J. Therm. Anal. Cal. 2018;131:1803-16.
  • [34] Ebrahimi HP, Hadi JS, Abdulnabi ZA, Bolandnazar Z. Spectroscopic, thermal analysis and DFT computational studies of salen –type Schiff base complexes. Spectrochimica Acta 2014;117:485-92.
  • [35] Gaussian 09, Revision D.01. Gaussian Inc. Wallingford CT, USA, 2009.
  • [36] Ochterski J. W,. Petersson Jr. G. A, Montgomery Jr. J. A., J. Chem. Phys. 104 (1996)2598.
  • [37] Montgomery J. A., Frisch M. J., Ochterski J. W., Petersson G. A., J. Chem. Phys. 112 (2000) 6532.
  • [38] Gökçınar E., Klapötke T. M., Bellamy A. J., j. Mol. Struct. 953 (2010) 18-23.
  • [39] Politzer P., Lane P., Concha M. C., Struct. Chem. 15 (2004) 468-79.
  • [40] Liu QR, Xue LW, Zhao GQ, Manganese(III) Complexes Derived from bis-Schiff Bases. Russian J. Coord. Chem. 2014; 40:757-63.
  • [41] Montazerozohari M, Jahromi SM, Masoudiasl A, McArdle P. Nanostructure zinc(II) Schiff Base complexes of a N-3-tridentate ligand as new biological active agents. Spectrochim. Acta A. 2015; 138:517-28.
  • [42] Gaelle DSY, Yufanyi DM, Jagan R, Agwara MO. Synthesis, Characterization and Antimicrobial Activity of cobalt(II) and cobalt(III) complexes derived from 1,10-Phenantroline with nitrate and azide co-Ligands. Cogent Chemistry 2016; 2: Article number: 1253201; DOI: 10.1080/23312009.2016.1253201.
  • [43] Atakol M, Atakol A, Yiğiter AÖ, Svoboda I, Atakol O. Investigation of energetic materials prepared by reactions of diamines with picrylchloride. J.Therm. Anal. Cal. 2017;127:1931-40.
  • [44] Şen N, Özkaramete E, Yılmaz N, Öz S, Svoboda I, Akay A, Atakol O. Thermal decomposition of dinitro-chloro-azido benzenes. J. Energ. Mat. 2014;32:75-9.
  • [45] Klapötke TM. Chemistry of High Energy Materials . Walter de Gruyter 2012;p75-79.
  • [46] Kubota N, Propellants and Explosives. Wiley-VCH Verlag GmbH & Co. KGaA 2007;p.36.
  • [47] Vyazovkin S, Burnham AK, Criado JM, Perez-Magueda LA, Popescu C, Sbirazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011;520:1-19.

The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring

Yıl 2018, Cilt: 22 Sayı: 3, 1262 - 1275, 20.09.2018
https://doi.org/10.19113/sdufenbed.431116

Öz

2-Chloro-3 and 5-dinitropyridine were put into
reaction with hydrazine and 3-aminopyrazole to obtain two new highly
nitrogenous energetic substances. These energetic substances are;
N(3,5-dinitropyridyn-2-yl) hydrazine (I),
and N(3,5-dinitropyridyn-2-yl)3-aminopyrazole (II). These substances were characterized with element analysis,
mass spectroscopy, IR spectroscopy, 1HNMR and 13CNMR
methods. Besides, the substances were analyzed with TG and thermal
decomposition mechanisms were interpreted. Apart from these, isothermal and
thermal kinetic analysis methods were used to reveal out the activation
energies and Arrhenius pre-exponential factors. Thermodynamic parameters of
decomposition reactions were measured by using these values.
Nitrofuroxane ring
was concluded to be the sub-product in thermal decomposition reactions.
Gaussian 09 software algorithms were used to measure the standard formation
enthalpy values of the two energetic substances.  Using these values, the reaction enthalpy
value of the thermal decomposition reaction according to Hess's law and the
result obtained was compared with the value obtained from the differential
scanning calorimetry method. Experimental and theoretical results were observed
to be similar. In addition to these, antimicrobial effects of the highly
nitrogenous energetic substances were measured for 5 different bacteria and
their antifungal effects were measured for one type of fungus. As they were
highly nitrogenous, the bacteria were found to be using the nitrogen in these
substances for nutritional purpose.

Kaynakça

  • [1] Huheey JF, The electronegativity of multiply bonded groups, J. Phys. Chem. 1966;70:2086-91.
  • [2] Agrawal JP, Surve RN, Sonawane SH. Some aromatic nitrate esters:Synthesis, Structural aspects,thermal and explosive properties. J.Hazard. Mat. 2000;77:11-31.
  • [3] Agrawal JP,Hodgson RD. Organic Chemistry of explosives. Chichester :Wiley;2007. P.158-62.
  • [4] Yiğiter AÖ, Atakol MK, Aksu ML, Atakol O. Thermal characterization and theoritical and experimental comparison of picryl chloride derivatives of heterocyclic energetic compounds. J. Therm. Anal. Cal. 2017;127:2199-2123.
  • [5] Badgujar D.M, Talawar M.B, . Harlapur S.F, Asthana S.N, Mahulikar P.P. Synthesis, characterization and evaluation of 1,2-bis(2,4,6-trinitrophenyl)hydrazine. J. Hazard. Mat.2009;172:276-279.
  • [6] Agrawal J.P. Past,Present & Future of Thermally Stable Explosives. Central Eur. J. Energ. Mat. 2013;9:273-290.
  • [7] Chiato ZL, Klapötke TM, Mieskes F, Stierstörfer J, Weyrauther M. (Picrylamino)-1,2,4-triazole Derivatives-Thermally stabile explosives, Eur. J. Inorg. Chem. 2016;956-62.
  • [8] Agrawal J.P. High Energy Materials. Wiley-VCH Verlag GmbH . 2010;93-95.
  • [9] Klapötke T.M. Chemsitry of High-Energy Materials. Walter de Gruyter. 2012.pp.141-61.
  • [10] Tao GH, Parrish DA, Shreeve JM. Nitrogen rich 5-(1-Methylhydrazinyl)tetrazole and its copper and siver complexes. Inorg. Chem. 2012;51:5305-12.
  • [11] Politzer P, Murray J. S. Decomposition, Crystal and Molecular Properties. Energetic Materials. Amsterdam.2003;Part 1:411-416.
  • [12] Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS. Environmentally compatible next generation green energetic materials. J. Hazard. Mat. 2009;161:589-607.
  • [13] Bailey A.S, Case J.R. 4:6-dinitrobenzofuroxan, nitrobenzodifuroxan and benzotrifuroxan: A new series of complex-forming reagents for aromatic hydrocarbons. Tetrahedron 1958;3:113-131.
  • [14] Reddy G.O, Murall B.K.M, Chotterjee A.K. Thermal study on picryl azide (2-azido-1,3,5-trinitrobenzene) decomposition using simultaneous thermogravimetry and differential scanning calorimetry. Propellants, Explosives, Pyrotechnics. 1983;8:29-33.
  • [15] Kehler J, Püschl A, Dahl O. Improved Syntheses of 1-Hydroxy-4-nitro-6-trifluoromethylbenzotriazole and 1-Hydroxy-4,6-dinitrobenzotriazole. Acta Chim. Scandinavica 1996;50:1171-73.
  • [16] Özkaramete, E, Şenocak N, K. İnal E.K, Öz S. Svoboda I, Atakol O. Experimental and computational studies on the thermal degradation of nitroazidobenzenes, propellants, explosives, pyrotechnics. 2013;38:113-119.
  • [17] Cardillo P, Gigante L, Lunghi A, Zanirato P. Revisiting the thermal decomposition of five ortho-substituted phenyl azides by calorimetric technics, J. Therm. Anal. Cal. 2010;100:191-198.
  • [18] Shremetev A.B, Aleksandrova N.S, Ignat N.V, Schulte M. Straightforward one-pot synthesis of benzofuroxans from o-halonitrobenzenes in Ionic Liquids. Mendeleev Comm.2012;22:95-97.
  • [19] Brown ME. Introduction to Thermal analysis. Kluwer Academic Publishers, 2001;p.206.
  • [20] Kraynikova A, Rotaru A, Györyova K, Homzova K, Manolea HO, Kavarova J, Hudecova D. Thermal behaviour and antimicrobial assay of some new zinc(II) 2-aminobenzoate complex compound with bioactive ligands. J. Therm. Anal. Cal. 2015;120:73-83.
  • [21] Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B. Comparative investigation fort he determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J. Therm. Anal. Cal.2017;129:1201-13.
  • [22] Sarada K, Muraleedharan K. Effect of addition of silver on the thermal decomposition kinetics of copper oxalate. J. Therm. Anal. Cal. 2016;123:643-51.
  • [23] Kullyakool S, Siriwong K, Noisong P, Danvirutai C. Kinetic triplet evaluation of a complicated dehyration of Co3(PO4)2.8H2O using the deconvolution and simlified master plots combined with nonlineer regression. J. Therm. Anal. Cal. 2017;127:1963-74.
  • [24] Suekkhayad A, Noisong P, Danvirutai C. Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2.H2O precursor. J. Therm. Anal. Cal. 2017;129:123-34.
  • [25] Moine EC, Bouamoud R, El Hamidi A, Khachani M, Halim M, Arsalane S. Mineralogical characterization and non-isothermal pyrolysis kinetics of Moroccan Rif oil shale. J. Therm. Anal. Cal. 2018;131:993-1004.
  • [26] Pouretedal HR, Mousavi SL. Study of the ratio of fuel to oxidant on the kinetic of ignition reaction of Mg/Ba(NO3)2 and Mg/Sr(NO3)2 pyrotechnics by non-isothermal TG/DSC technique. J. Therm. Anal. Cal. 2018; DOI:10.1007/s10973-018-7028
  • [27] Jarayaman K, Kök MV, Gökalp İ. Combustion properties and kinetics of different biomass samples using TG-MS technique. J. Therm. Anal. Cal. 2017;127:1361-70.
  • [28] Pouretedal HR, Damiri S, Ravanbod M, Hagsdost M, Masoudi S. The kinetic of thermal decomposition of PETN, Pentastite and Pentolite by TG/DTA non-isothermal methods. J. Therm. Anal. Cal. 2017;129:521-29.
  • [29] Ravanbod M, Pouretedal HR. Catalytic effect of Fe2O3, Mn2O3 and TiO2 nanoparticles on thermal decomposition of potassium nitrate. J. Therm. Anal. Cal. 2016;124:1091-98.
  • [30] Koga N. Qzawa’s kinetic method for analyzing thermoanalytical curves. J. Therm. Anal. Cal. 2013;113:1527-41.
  • [31] Abdel-Kader NS, Amin RM, El-Ansary AI. Complex of Schiff base of benzopyran-4-one derivative. J. Therm. Anal. Cal. 2016;123:1695-1706.
  • [32] Naktiyok J, Bayrakçeken H, Özer AK, Gülaboğlu MŞ. Investigation of combustion kinetics uf Umutbaca-lignite by thermal analysis technique. J. Therm. Anal. Cal. 2017;129:531-39.
  • [33] Ganeshan G, Shadangi KP, Mohanty K. Degredation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephatalide (PET) using Coats-Redfern method. J. Therm. Anal. Cal. 2018;131:1803-16.
  • [34] Ebrahimi HP, Hadi JS, Abdulnabi ZA, Bolandnazar Z. Spectroscopic, thermal analysis and DFT computational studies of salen –type Schiff base complexes. Spectrochimica Acta 2014;117:485-92.
  • [35] Gaussian 09, Revision D.01. Gaussian Inc. Wallingford CT, USA, 2009.
  • [36] Ochterski J. W,. Petersson Jr. G. A, Montgomery Jr. J. A., J. Chem. Phys. 104 (1996)2598.
  • [37] Montgomery J. A., Frisch M. J., Ochterski J. W., Petersson G. A., J. Chem. Phys. 112 (2000) 6532.
  • [38] Gökçınar E., Klapötke T. M., Bellamy A. J., j. Mol. Struct. 953 (2010) 18-23.
  • [39] Politzer P., Lane P., Concha M. C., Struct. Chem. 15 (2004) 468-79.
  • [40] Liu QR, Xue LW, Zhao GQ, Manganese(III) Complexes Derived from bis-Schiff Bases. Russian J. Coord. Chem. 2014; 40:757-63.
  • [41] Montazerozohari M, Jahromi SM, Masoudiasl A, McArdle P. Nanostructure zinc(II) Schiff Base complexes of a N-3-tridentate ligand as new biological active agents. Spectrochim. Acta A. 2015; 138:517-28.
  • [42] Gaelle DSY, Yufanyi DM, Jagan R, Agwara MO. Synthesis, Characterization and Antimicrobial Activity of cobalt(II) and cobalt(III) complexes derived from 1,10-Phenantroline with nitrate and azide co-Ligands. Cogent Chemistry 2016; 2: Article number: 1253201; DOI: 10.1080/23312009.2016.1253201.
  • [43] Atakol M, Atakol A, Yiğiter AÖ, Svoboda I, Atakol O. Investigation of energetic materials prepared by reactions of diamines with picrylchloride. J.Therm. Anal. Cal. 2017;127:1931-40.
  • [44] Şen N, Özkaramete E, Yılmaz N, Öz S, Svoboda I, Akay A, Atakol O. Thermal decomposition of dinitro-chloro-azido benzenes. J. Energ. Mat. 2014;32:75-9.
  • [45] Klapötke TM. Chemistry of High Energy Materials . Walter de Gruyter 2012;p75-79.
  • [46] Kubota N, Propellants and Explosives. Wiley-VCH Verlag GmbH & Co. KGaA 2007;p.36.
  • [47] Vyazovkin S, Burnham AK, Criado JM, Perez-Magueda LA, Popescu C, Sbirazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011;520:1-19.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Emine Kübra İnal

Nurcan Acar

Şaziye Betül Sopacı Bu kişi benim

Ceren Yıldız

Hasan Nazır

Orhan Atakol

Sevi Öz

Yayımlanma Tarihi 20 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 3

Kaynak Göster

APA İnal, E. K., Acar, N., Sopacı, Ş. B., Yıldız, C., vd. (2018). The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 1262-1275. https://doi.org/10.19113/sdufenbed.431116
AMA İnal EK, Acar N, Sopacı ŞB, Yıldız C, Nazır H, Atakol O, Öz S. The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring. SDÜ Fen Bil Enst Der. Eylül 2018;22(3):1262-1275. doi:10.19113/sdufenbed.431116
Chicago İnal, Emine Kübra, Nurcan Acar, Şaziye Betül Sopacı, Ceren Yıldız, Hasan Nazır, Orhan Atakol, ve Sevi Öz. “The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 3 (Eylül 2018): 1262-75. https://doi.org/10.19113/sdufenbed.431116.
EndNote İnal EK, Acar N, Sopacı ŞB, Yıldız C, Nazır H, Atakol O, Öz S (01 Eylül 2018) The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 3 1262–1275.
IEEE E. K. İnal, “The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring”, SDÜ Fen Bil Enst Der, c. 22, sy. 3, ss. 1262–1275, 2018, doi: 10.19113/sdufenbed.431116.
ISNAD İnal, Emine Kübra vd. “The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/3 (Eylül 2018), 1262-1275. https://doi.org/10.19113/sdufenbed.431116.
JAMA İnal EK, Acar N, Sopacı ŞB, Yıldız C, Nazır H, Atakol O, Öz S. The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring. SDÜ Fen Bil Enst Der. 2018;22:1262–1275.
MLA İnal, Emine Kübra vd. “The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 3, 2018, ss. 1262-75, doi:10.19113/sdufenbed.431116.
Vancouver İnal EK, Acar N, Sopacı ŞB, Yıldız C, Nazır H, Atakol O, Öz S. The Thermal Investigation, Thermokinetic Analysis and Antimicrobial Activity of Two New Energetic Materials Obtained from Nucleophilic Substitution of Nitro Pyridine Ring. SDÜ Fen Bil Enst Der. 2018;22(3):1262-75.

e-ISSN: 1308-6529