BibTex RIS Kaynak Göster

A Study on a Generalized Relaxed Curvature Energy Action

Yıl 2018, Cilt: 22 Sayı: Özel, 541 - 546, 05.10.2018

Öz

We investigate the variational problem of the generalized relaxed elastic line defined as the problem of finding critical points of the functional obtained by adding the twisting energy to the bending energy functional, on a non-degenerate surface in Minkowski 3-space. There arise two different situations for the curve $\alpha $ given on any non-degenerate surface S in Minkowski 3-space according to the absolute value expression in the curvature and torsion formulas. We study the problem for both cases and as a result we characterize the generalized relaxed elastic line with an Euler-Lagrange equation and 3 boundary conditions in both cases. Finally, we search special solutions for the differential equation system obtained with regard to the geodesic curvature, geodesic torsion and normal curvature of the curve.

Kaynakça

  • [1] Manning, G.S., 1987. Relaxed Elastic Line on a Curved Surface. Quart. Appl. Math., 45(3) 515-527.
  • [2] Nickerson, H.K., Manning G.S., 1988. Intrinsic Equations for a Relaxed Elastic Line on an Oriented Surface. Geom. Dedicata, 27(2) 127-136.
  • [3] Yücesan, A., Özkan, G., 2012. Generalized Relaxed Elastic Line on an Oriented Surface. Ukranian Mathematical Journal, 64(8) 1121-1131.
  • [4] Akutagawa, K., Nishikawa S., 1990. The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space. Tohoku Math. J., 42 67-82.
  • [5] Lopez, R., 2014. Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space. International Electronic Journal of Geometry, 7(1) 44-107.
  • [6] O’Neill, B., 1993. Semi-Riemannian Geometry with Applications to Relativity. Academic Pres Inc., New York, 466p.
  • [7] Weinstock, R., 1952. Calculus of Variations with Application to Physics and Engineering. Dover Publications, Inc., New York, 326p.
  • [8] Özkan, G., Yücesan A., 2014. Relaxed Hyperelastic Curves on a Non-degenerate Surface. Mediterr. J. Math., 11 1241-1250.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Gözde Özkan Tükel

Ahmet Yücesan

Yayımlanma Tarihi 5 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: Özel

Kaynak Göster

APA Özkan Tükel, G., & Yücesan, A. (2018). A Study on a Generalized Relaxed Curvature Energy Action. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, 541-546.
AMA Özkan Tükel G, Yücesan A. A Study on a Generalized Relaxed Curvature Energy Action. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ekim 2018;22:541-546.
Chicago Özkan Tükel, Gözde, ve Ahmet Yücesan. “A Study on a Generalized Relaxed Curvature Energy Action”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, Ekim (Ekim 2018): 541-46.
EndNote Özkan Tükel G, Yücesan A (01 Ekim 2018) A Study on a Generalized Relaxed Curvature Energy Action. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 541–546.
IEEE G. Özkan Tükel ve A. Yücesan, “A Study on a Generalized Relaxed Curvature Energy Action”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 22, ss. 541–546, 2018.
ISNAD Özkan Tükel, Gözde - Yücesan, Ahmet. “A Study on a Generalized Relaxed Curvature Energy Action”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 (Ekim 2018), 541-546.
JAMA Özkan Tükel G, Yücesan A. A Study on a Generalized Relaxed Curvature Energy Action. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:541–546.
MLA Özkan Tükel, Gözde ve Ahmet Yücesan. “A Study on a Generalized Relaxed Curvature Energy Action”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, 2018, ss. 541-6.
Vancouver Özkan Tükel G, Yücesan A. A Study on a Generalized Relaxed Curvature Energy Action. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:541-6.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.