We investigate the variational problem of the generalized relaxed elastic line defined as the problem of finding critical points of the functional obtained by adding the twisting energy to the bending energy functional, on a non-degenerate surface in Minkowski 3-space. There arise two different situations for the curve $\alpha $ given on any non-degenerate surface S in Minkowski 3-space according to the absolute value expression in the curvature and torsion formulas. We study the problem for both cases and as a result we characterize the generalized relaxed elastic line with an Euler-Lagrange equation and 3 boundary conditions in both cases. Finally, we search special solutions for the differential equation system obtained with regard to the geodesic curvature, geodesic torsion and normal curvature of the curve.
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 5 Ekim 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 22 Sayı: Özel |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.