Araştırma Makalesi
BibTex RIS Kaynak Göster

Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions

Yıl 2019, Cilt: 23 Sayı: 1, 119 - 125, 01.04.2019
https://doi.org/10.19113/sdufenbed.443411

Öz

In
recent years, there has been an increase in research into industrial
applications, especially in the machining of lightweight metals. In this study,
the effect of processing of AZ91D magnesium alloy in different parameters
(machining medium, cutting speed, depth of cut, feed rate and cutting tool
types)
on the
force, chip formation and cutting tool conditions were investigated. The
experiments were designed using the L18 orthogonal array of the
Taguchi method. Thanks to the Taguchi method, time and cost savings were
achieved by reducing the number of tests required. Then, the effect of the
turning parameters on the force values was obtained by analysis of variance.
The most important parameters affecting the force values were the depth of cut
and the feed rate. As a result, only the cutting speed has a significant effect
on the chip type.

Kaynakça

  • [1] Shi, K., Ren, J., Zhang, D., Zhai, Z., Huang, X. 2017. Tool wear behaviors and its effect on machinability in dry high-speed milling of magnesium alloy. The International Journal of Advanced Manufacturing Technology, 90, 9-12, 3265-3273.
  • [2] Suneesh, E., Sivapragash, M. 2019. Parameter optimisation to combine low energy consumption with high surface integrity in turning Mg/Al2O3 hybrid composites under dry and MQL conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 2, 89.
  • [3] Buldum, B. B., Aydın, S., Ozkul, I. 2013. Investigation of magnesium alloys machinability. International Journal of Electronics, Mechanical and Mechatronics Engineering, 2(3), 261-268.
  • [4] Ugurlu, M., Cagan, S. C., Buldum, B. B. 2017. Improvement of surface roughness using ANOVA for AZ31B magnesium alloy with ball burnishing process. Int J Engine Res Technol, 6(9), 216-221.
  • [5] Danish, M., Ginta, T. L., Habib, K., Abdul Rani, A. M., Saha, B. B. 2018. Effect of cryogenic cooling on the heat transfer during turning of AZ31C magnesium alloy. Heat Transfer Engineering, 1-10.
  • [6] Viswanathan, R., Ramesh, S., Subburam, V. 2018. Measurement and optimization of performance characteristics in turning of Mg alloy under dry and MQL conditions. Measurement, 120, 107-113.
  • [7] Ramesh, S., Viswanathan, R., Ambika, S. 2016. Measurement and optimization of surface roughness and tool wear via grey relational analysis, TOPSIS and RSA techniques. Measurement, 78, 63-72.
  • [8] Thein, M. A., Lu, L., Lai, M. 2009. Effect of milling and reinforcement on mechanical properties of nanostructured magnesium composite. Journal of Materials Processing Technology, 209(9), 4439-4443.
  • [9] Grigoraş, C. C., Brabie, G. 2015. The influence of milling parameters on the surface roughness in the case of magnesium alloy AZ61A. Elastic, 3(20), 41-45.
  • [10] Jović, S., Arsić, N., Vukojević, V., Anicic, O., Vujičić, S. 2017. Determination of the important machining parameters on the chip shape classification by adaptive neuro-fuzzy technique. Precision Engineering, 48, 18-23.
  • [11] Mia, M., Dhar, N. R. 2016. Response surface and neural network based predictive models of cutting temperature in hard turning. Journal of advanced research, 7(6), 1035-1044.
  • [12] Segreto, T., Simeone, A., Teti, R. 2014. Principal component analysis for feature extraction and NN pattern recognition in sensor monitoring of chip form during turning. CIRP Journal of Manufacturing Science and Technology, 7(3), 202-209.
  • [13] Byrne, G., Dornfeld, D., Denkena, B. 2003. Advancing cutting technology. CIRP Annals, 52(2), 483-507.
  • [14] Venkatesan, K. 2017. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd: YAG laser source. Journal of advanced research, 8(4), 407-423.
  • [15] Teti, R., Jawahir, I., Jemielniak, K., Segreto, T., Chen, S., Kossakowska, J. 2006. Chip form monitoring through advanced processing of cutting force sensor signals. CIRP annals, 55(1), 75-80.
  • [16] Hegab, H., Umer, U., Soliman, M., Kishawy, H. A. 2018. Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718. The International Journal of Advanced Manufacturing Technology, 96, 9-12, 3449-3458.
  • [17] Buldum, B., Esme, U., Kemal Külekci, M., Sik, A., Kazançoğlu, Y. 2012. Use of Grey-Taguchi method for the optimization of oblique turning process of AZ91D magnesium alloy. Materials Testing, 54, 11-12, 779-785.
  • [18] Grzesik, W. 2008. Advanced machining processes of metallic materials: theory, modelling and applications. Elsevier.
  • [19] Shaw, M. C., Cookson, J. 2005. Metal cutting principles. Oxford university press New York.
  • [20] Groover, M. P. 2007. Fundamentals of modern manufacturing: materials processes, and systems. John Wiley & Sons.
  • [21] Kalpakjian, S. S. 2013. Manufacturing engineering and technology. Pearson Education Limited.
  • [22] Warsi, S. S., Jaffery, S. H. I., Ahmad, R., Khan, M., Agha, M. H., Ali, L. 2018. Development and analysis of energy consumption map for high-speed machining of Al 6061-T6 alloy. The International Journal of Advanced Manufacturing Technology, 1-12.
  • [23] ISO I. 3685: Tool-Life Testing with Single-Point Turning Tools. 1993. International Organization for Standardization (ISO): Geneva, Switzerland.

Farklı İşleme Koşullarında AZ91D Magnezyum Alaşımının Tornalanmasında Talaş Morfolojisi

Yıl 2019, Cilt: 23 Sayı: 1, 119 - 125, 01.04.2019
https://doi.org/10.19113/sdufenbed.443411

Öz

Son
yıllarda, özellikle hafif metallerin işlenmesinde ve bu metallerin endüstride
uygulamalarına yönelik araştırmalarda önemli ölçüde artış olmuştur. Bu
çalışmada, AZ91D magnezyum alaşımı farklı parametrelerde (işleme ortamı, kesme
hızı, kesme derinliği, ilerleme oranı ve kesici takım tiplerine) işlenmesi
sonrasında kuvvet, talaş tipleri ve kesici takım durumları incelenmiştir.
Deneyler, Taguchi metodunun L18 ortogonal dizini kullanılarak
tasarlanmıştır.
Taguchi
metodu sayesinde yapılması gereken deney sayısı azaltılarak zaman ve maliyet
tasarrufu sağlanmıştır. Ardından varyans analizi yapılarak tornalama
parametrelerinin kuvvet değerlerine olan etkisi elde edilmiştir. Varyans
analizi sonuçlarından kuvvet değerlerini etkileyen en önemli parametrelerin
kesme derinliği ve ilerleme oranı olduğu belirlenmiştir. Sonuç olarak, yalnızca
kesme hızının talaş tipinde önemli bir etkisinin olduğu görülmüştür.

Kaynakça

  • [1] Shi, K., Ren, J., Zhang, D., Zhai, Z., Huang, X. 2017. Tool wear behaviors and its effect on machinability in dry high-speed milling of magnesium alloy. The International Journal of Advanced Manufacturing Technology, 90, 9-12, 3265-3273.
  • [2] Suneesh, E., Sivapragash, M. 2019. Parameter optimisation to combine low energy consumption with high surface integrity in turning Mg/Al2O3 hybrid composites under dry and MQL conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 2, 89.
  • [3] Buldum, B. B., Aydın, S., Ozkul, I. 2013. Investigation of magnesium alloys machinability. International Journal of Electronics, Mechanical and Mechatronics Engineering, 2(3), 261-268.
  • [4] Ugurlu, M., Cagan, S. C., Buldum, B. B. 2017. Improvement of surface roughness using ANOVA for AZ31B magnesium alloy with ball burnishing process. Int J Engine Res Technol, 6(9), 216-221.
  • [5] Danish, M., Ginta, T. L., Habib, K., Abdul Rani, A. M., Saha, B. B. 2018. Effect of cryogenic cooling on the heat transfer during turning of AZ31C magnesium alloy. Heat Transfer Engineering, 1-10.
  • [6] Viswanathan, R., Ramesh, S., Subburam, V. 2018. Measurement and optimization of performance characteristics in turning of Mg alloy under dry and MQL conditions. Measurement, 120, 107-113.
  • [7] Ramesh, S., Viswanathan, R., Ambika, S. 2016. Measurement and optimization of surface roughness and tool wear via grey relational analysis, TOPSIS and RSA techniques. Measurement, 78, 63-72.
  • [8] Thein, M. A., Lu, L., Lai, M. 2009. Effect of milling and reinforcement on mechanical properties of nanostructured magnesium composite. Journal of Materials Processing Technology, 209(9), 4439-4443.
  • [9] Grigoraş, C. C., Brabie, G. 2015. The influence of milling parameters on the surface roughness in the case of magnesium alloy AZ61A. Elastic, 3(20), 41-45.
  • [10] Jović, S., Arsić, N., Vukojević, V., Anicic, O., Vujičić, S. 2017. Determination of the important machining parameters on the chip shape classification by adaptive neuro-fuzzy technique. Precision Engineering, 48, 18-23.
  • [11] Mia, M., Dhar, N. R. 2016. Response surface and neural network based predictive models of cutting temperature in hard turning. Journal of advanced research, 7(6), 1035-1044.
  • [12] Segreto, T., Simeone, A., Teti, R. 2014. Principal component analysis for feature extraction and NN pattern recognition in sensor monitoring of chip form during turning. CIRP Journal of Manufacturing Science and Technology, 7(3), 202-209.
  • [13] Byrne, G., Dornfeld, D., Denkena, B. 2003. Advancing cutting technology. CIRP Annals, 52(2), 483-507.
  • [14] Venkatesan, K. 2017. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd: YAG laser source. Journal of advanced research, 8(4), 407-423.
  • [15] Teti, R., Jawahir, I., Jemielniak, K., Segreto, T., Chen, S., Kossakowska, J. 2006. Chip form monitoring through advanced processing of cutting force sensor signals. CIRP annals, 55(1), 75-80.
  • [16] Hegab, H., Umer, U., Soliman, M., Kishawy, H. A. 2018. Effects of nano-cutting fluids on tool performance and chip morphology during machining Inconel 718. The International Journal of Advanced Manufacturing Technology, 96, 9-12, 3449-3458.
  • [17] Buldum, B., Esme, U., Kemal Külekci, M., Sik, A., Kazançoğlu, Y. 2012. Use of Grey-Taguchi method for the optimization of oblique turning process of AZ91D magnesium alloy. Materials Testing, 54, 11-12, 779-785.
  • [18] Grzesik, W. 2008. Advanced machining processes of metallic materials: theory, modelling and applications. Elsevier.
  • [19] Shaw, M. C., Cookson, J. 2005. Metal cutting principles. Oxford university press New York.
  • [20] Groover, M. P. 2007. Fundamentals of modern manufacturing: materials processes, and systems. John Wiley & Sons.
  • [21] Kalpakjian, S. S. 2013. Manufacturing engineering and technology. Pearson Education Limited.
  • [22] Warsi, S. S., Jaffery, S. H. I., Ahmad, R., Khan, M., Agha, M. H., Ali, L. 2018. Development and analysis of energy consumption map for high-speed machining of Al 6061-T6 alloy. The International Journal of Advanced Manufacturing Technology, 1-12.
  • [23] ISO I. 3685: Tool-Life Testing with Single-Point Turning Tools. 1993. International Organization for Standardization (ISO): Geneva, Switzerland.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Süleyman Cinar Cagan 0000-0002-5552-2135

Berat Barış Buldum 0000-0003-2855-2571

İskender Özkul 0000-0003-4255-0564

Yayımlanma Tarihi 1 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 1

Kaynak Göster

APA Cagan, S. C., Buldum, B. B., & Özkul, İ. (2019). Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 119-125. https://doi.org/10.19113/sdufenbed.443411
AMA Cagan SC, Buldum BB, Özkul İ. Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions. SDÜ Fen Bil Enst Der. Nisan 2019;23(1):119-125. doi:10.19113/sdufenbed.443411
Chicago Cagan, Süleyman Cinar, Berat Barış Buldum, ve İskender Özkul. “Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 1 (Nisan 2019): 119-25. https://doi.org/10.19113/sdufenbed.443411.
EndNote Cagan SC, Buldum BB, Özkul İ (01 Nisan 2019) Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 1 119–125.
IEEE S. C. Cagan, B. B. Buldum, ve İ. Özkul, “Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions”, SDÜ Fen Bil Enst Der, c. 23, sy. 1, ss. 119–125, 2019, doi: 10.19113/sdufenbed.443411.
ISNAD Cagan, Süleyman Cinar vd. “Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/1 (Nisan 2019), 119-125. https://doi.org/10.19113/sdufenbed.443411.
JAMA Cagan SC, Buldum BB, Özkul İ. Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions. SDÜ Fen Bil Enst Der. 2019;23:119–125.
MLA Cagan, Süleyman Cinar vd. “Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 1, 2019, ss. 119-25, doi:10.19113/sdufenbed.443411.
Vancouver Cagan SC, Buldum BB, Özkul İ. Chip Morphology in Turning of AZ91D Magnesium Alloy under Different Machining Conditions. SDÜ Fen Bil Enst Der. 2019;23(1):119-25.

Cited By







Built-up edge formation and flank wear evolution in conventional machining of AZ91 magnesium alloy
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
https://doi.org/10.1177/09544089231163120

e-ISSN: 1308-6529