Araştırma Makalesi
BibTex RIS Kaynak Göster

Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi

Yıl 2019, Cilt: 23 Sayı: 1, 148 - 156, 01.04.2019
https://doi.org/10.19113/sdufenbed.455538

Öz










Modern
tarımın yaygınlaşmasıyla birlikte dünyada pestisit kullanımı artmıştır. Birçok
ülkede olduğu gibi ülkemizde de aşırı ve bilinçsizce pestisit kullanımı
sonucunda su ve toprak ortamında giderek artan miktarlarda pestisit kirlenmesi
görülmektedir. Meriç- Ergene Havzası’nda bulunan ve etrafında yoğun bir şekilde
çeltik tarımı yapılan Meriç Deltası sulak alanları da bu kirlenmenin görüldüğü
bölgelerden biridir. Bu çalışma kapsamında, Meriç Deltası sulak alanlarından
numuneler alınarak organofosfatlı pestisitlerin akıbeti incelenmiştir. Sulak
alanları temsil etmesi amacıyla pilot ölçekli reaktörle çalışılmış, seçilen 4
organofosfatlı pestisit (Chlorpyrifos, Dichlorvos, Fenthion, Diazinon) için
biyolojik ayrışma ve adsorpsiyon deneyleri yapılmıştır. Pilot ölçekli sistemde, seçilen pestisitlerin yarı ömürleri
belirlenmiş ve bitki ve sediment üzerine adsorpsiyon miktarları ölçülmüştür. Aynı
zamanda pestisitlerin yeraltı suyuna sızma potansiyelleri GUS (“
Groundwater
Ubiquity Score” / “Yeraltı Suyunda Mevcudiyet Katsayısı”) kullanılarak

hesaplanmıştır. Elde edilen sonuçlar serbest yüzey akışlı yapay sulak alan
sistemlerinin organofosfatlı pestisitlerin giderimindeki etkinliğini ortaya
koymuştur. Bu çalışmadan elde edilen
sonuçlar, organofosfatlı pestisitlerin giderimi için önerilen yapay sulak
alanların tasarımı için yol gösterici niteliktedir.
    

Kaynakça

  • [1] Karpuzcu, M. E., Sedlak, D. L., Stringfellow, W. T. 2013. Biotransformation of chlorpyrifos in riparian wetlands in agricultural watersheds: implications for wetland management, Journal of Hazardous Materials 244-245(2013), 111-20.
  • [2] Pedersen, J. A., Yeager, M. A., Suffet, I. 2006. Organophosphorus insecticides in agricultural and residential runoff: Field observations and implications for total maximum daily load development, Environmental science & technology 40(7) (2006) 2120-2127.
  • [3] Vymazal, J., Březinová, T. 2015. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review, Environment international 75 (2015) 11-20.
  • [4] Singh, B. K. 2009. Organophosphorus-degrading bacteria: ecology and industrial applications, Nature Reviews Microbiology 7(2) (2009) 156.
  • [5] Delen, N., Durmuşoğlu, E., Güncan, A., Güngör, N., Turgut, C., Burçak, A. 2005. Türkiye'de Pestisit Kullanimi, Kalinti ve Organizmalarda Duyarlilik Azalişi Sorunlari, Türkiye Ziraat Mühendisliği 6 (2005).
  • [6] Tiryaki, O., Canhilal, R., Horuz, S. 2010. Tarım ilaçları kullanımı ve riskleri, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 26(2) (2010) 154-169.
  • [7] Karpouzas, D. G., Singh, B. K. 2006. Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis, Advances in microbial physiology 51 (2006) 119-225.
  • [8] Demirdöğen, B. 2010. Organophosphate pesticide poisonings and the role of serum paraoxonase 1 (PON1) enzyme in organophosphate metabolism, Türk Hijyen ve Deneysel Biyoloji Dergisi 67(2) (2010) 97-112.
  • [9] Öterler, B. 2009. 3 Tatlı Su Fitoplankton Türünün (Chlorella vulgaris beij. 1890, Scenedesmus quadricauda (turpin) bréb. 1835 ve Cyclotella meneghiniana kütz. 1844) Gelişimi Üzerine 5 Farklı Pestisitin (Azinphos-methyl, Malathion, Parathion-ethyl, Terbufos, Trichlorfon) Toksisitesi, Fen Bilimleri Enstitüsü, Trakya Üniversitesi, Edirne, 2009.
  • [10] Matamoros, V., Puigagut, J., García, J., Bayona, J. M., 2007. Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: a preliminary screening, Chemosphere 69(9) (2007) 1374-1380.
  • [11] Gill, S. L., Spurlock, F. C., Goh, K. S., Ganapathy, C. 2008. Vegetated ditches as a management practice in irrigated alfalfa, Environmental monitoring and assessment 144(1-3) (2008) 261-267.
  • [12] Sherrard, R., Bearr, J., Murray-Gulde, C., Rodgers Jr, J., Shah, Y. 2004. Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures, Environmental Pollution 127(3) (2004) 385-394.
  • [13] Cooper, C., Moore, M., Bennett, E., Smith, S., Farris, J., Milam, C., Shields, F. 2004. Innovative uses of vegetated drainage ditches for reducing agricultural runoff, Water Science and Technology 49(3) 117-123.
  • [14] Bouldin, J., Farris, J., Moore, M., Cooper, C. 2004. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes, Environmental Pollution 132(3) (2004) 403-411.
  • [15] Schulz, R., Peall, S. K., 2001. Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment, South Africa, Environmental science & technology 35(2) (2001) 422-426.
  • [16] Moore, M. T., Cooper, C. M., Smith, S., Rodgers, J.H. 2000. Pesticide mitigation capacities of constructed wetlands, In: Proceedings of a Conference on Sustainability of Wetlands and Water Resources, May 23-25, Oxford, Mississippi, eds. Holland, Marjorie M.; Warren, Melvin L.; Stanturf, John A., p. 133-134.
  • [17] Budd, R., O'Geen, A., Goh, K. S., Bondarenko, S., Gan, J. 2009. Efficacy of constructed wetlands in pesticide removal from tailwaters in the Central Valley, California, Environmental science & technology 43(8) (2009) 2925-2930.
  • [18] Gregoire, C., Elsaesser, D., Huguenot, D., Lange, J., Lebeau, T., Merli, A., Mose, R., Passeport, E., Payraudeau, S., Schütz, T. 2009. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems-a review, Climate Change, Intercropping, Pest Control and Beneficial Microorganisms, Springer2009, pp. 293-338.
  • [19] Rogers, M. R., Stringfellow, W. T. 2009. Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches, Chemosphere 75(1) (2009) 109-114.
  • [20] Karpuzcu, M. E., Sedlak, D. L., Stringfellow, W. T. 2013. Biotransformation of chlorpyrifos in riparian wetlands in agricultural watersheds: Implications for wetland management, Journal of hazardous materials 244 (2013) 111-120.
  • [21] Swift, M. C., Niemi, G. J., Perry, J. A. 2015. Predictive Modeling and Experimental Design of Lotic Mesocosms.
  • [22] Rodgers, J. H., Dunn, A. 1992. Developing design guidelines for constructed wetlands to remove pesticides from agricultural runoff, Ecological Engineering 1(1) (1992) 83-95.
  • [23] Moore, M., Schulz, R., Cooper, C., Smith, S., Rodgers, J. 2002. Mitigation of chlorpyrifos runoff using constructed wetlands, Chemosphere 46(6) (2002) 827-835.
  • [24] Moore, M., Rodgers Jr, J., Cooper, C., Smith Jr S. 2000. Constructed wetlands for mitigation of atrazine-associated agricultural runoff, Environmental pollution 110(3) 393-399.
  • [25] Detenbeck, N. E., Hermanutz, R., Allen, K., Swift, M. C. 1996. Fate and effects of the herbicide atrazine in flow‐through wetland mesocosms, Environmental Toxicology and Chemistry 15(6) (1996) 937-946.
  • [26] Rogers, M. R., Stringfellow, W. T. 2009. Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches, Chemosphere 75(1) (2009) 109-14.
  • [27] Moore, M. T., Kroger, R., Locke, M. A., Lizotte, R. E., Testa, S. 2014. 3rd, C.M. Cooper, Diazinon and permethrin mitigation across a grass-wetland buffer, Bulletin of Environmental Contamination and Toxicology 93(5) (2014) 574-9.
  • [28] Dabrowski, J.,Peall, S., Reinecke, A., Liess, M., Schulz, R. 2002. Runoff-related pesticide input into the Lourens River, South Africa: basic data for exposure assessment and risk mitigation at the catchment scale, Water, Air, and Soil Pollution 135(1-4) (2002) 265-283.
  • [29] Cheng, S., Vidakovic-Cifrek, Ž. Grosse, W., Karrenbrock, F. 2002. Xenobiotics removal from polluted water by a multifunctional constructed wetland, Chemosphere 48(4) (2002) 415-418.
  • [30] Mahabali, S., Spanoghe, P. 2014. Mitigation of two insecticides by wetland plants: feasibility study for the treatment of agricultural runoff in Suriname (South America), Water, Air, & Soil Pollution 225(1) (2014) 1771.
  • [31] McKinlay, R., Kasperek, K. 1999. Observations on decontamination of herbicide-polluted water by marsh plant systems, Water Research 33(2) (1999) 505-511.
  • [32] Locke, M., Weaver, R., Zablotowicz, R., Steinriede, R., Bryson, C., Cullum, R. 2011. Constructed wetlands as a component of the agricultural landscape: mitigation of herbicides in simulated runoff from upland drainage areas, Chemosphere 83(11) (2011) 1532-1538.
  • [33] Stearman, G. K., George, D. B., Carlson, K., Lansford, S. 2003. Pesticide removal from container nursery runoff in constructed wetland cells, Journal of environmental quality 32(4) 1548-1556.
  • [34] Tokatlı, C., Köse, E., Uğurluoğlu, A., Çiçek, A., Emiroğlu, Ö. 2014. Use of Geographic Information System (GIS) to Evaluate the Water Quality of Gala Lake (Edirne), Sigma 32 490-501.
  • [35] Köse, E. 2015. Meriç Deltası ve civarının florası. .Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 59s, Edirne.
  • [36] Benhabib, K., Town, R. M., van Leeuwen, H. P. 2009. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME), Langmuir 25(6) 3381-3386.
  • [37] Wu, J., Laird, D. A. 2004. Interactions of chlorpyrifos with colloidal materials in aqueous systems, Journal of environmental quality 33(5) 1765-1770.
  • [38] Goodrich, J.A., Lykins, B.W., Clark, R. M. 1991. Drinking water from agriculturally contaminated groundwater, Journal of Environmental Quality 20(4) (1991) 707-717.
  • [39] Gerstl, Z. 1990. Estimation of organic chemical sorption by soils, Journal of contaminant hydrology 6(4) (1990) 357-375.
  • [40] Sabljić, A., Güsten, H., Verhaar, H., Hermens, J. 1995. QSAR modelling of soil sorption. Improvements and systematics of log K OC vs. log K OW correlations, Chemosphere 31(11) (1995) 4489-4514.
  • [41] Howard, P.H. 1991 Handbook of environmental fate and exposure data: for organic chemicals, volume III pesticides, CRC press, United States, 103s.
  • [42] Arienzo, M., Crisanto, T., Sanchez-Martin, M. J., Sanchez-Camazano, M. 1994. Effect of soil characteristics on adsorption and mobility of (14C) diazinon, Journal of Agricultural and Food Chemistry 42(8) (1994) 1803-1808.
  • [43] Nemeth-Konda, L., Füleky, G., Morovjan, G., Csokan, P. 2002. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil, Chemosphere 48(5) 545-552.
  • [44] Hernández-Soriano, M. C., Peña, A., Mingorance, M. D. 2007. Retention of organophosphorous insecticides on a calcareous soil modified by organic amendments and a surfactant, Science of the total environment 378(1) (2007) 109-113.
  • [45] Liu, B., McConnell, L., Torrents, A. 2001. Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay, Chemosphere 44(6) (2001) 1315-1323.
  • [46] Karpuzcu, M. E. 2012. Wetlands as Best Management Practices to Mitigate Agricultural Nonpoint Source Pollution, Civil and Environmental Engineering UC Berkeley, UC Berkeley, California, 2012.
  • [47] Walker, W., Cripe, C., Pritchard, P., Bourquin, A. 1988. Biological and abiotic degradation of xenobiotic compounds in in vitro estaurine water and sediment/water systems, Chemosphere 17(12) (1988) 2255-2270.
  • [48] Bondarenko, S., Gan, J. 2004. Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream sediments, Environmental Toxicology and Chemistry 23(8) (2004) 1809-1814.

Investigating Fate of Organophosphate Pesticides in Pilot Scale Wetland Reactors

Yıl 2019, Cilt: 23 Sayı: 1, 148 - 156, 01.04.2019
https://doi.org/10.19113/sdufenbed.455538

Öz










With
the widespread use of modern agriculture, the use of pesticides in the world
has increased. As in many countries, pesticide pollution has increasingly been
observed in Turkey due to excessive and unconscious use of pesticides. Meric
Delta, located in the Meric-Ergene Basin and receiving agricultural drainage
from paddy fields, is one of the regions subject to pesticide pollution. In
this study, samples were taken from the wetlands in Meric Delta and the fate of
four organophosphate pesticides (Chlorpyrifos, Dichlorvos, Fenthion, Diazinon)
was investigated in a pilot scale wetland reactor. In the pilot scale reactor
set up to represent wetlands in Meric-Ergene Basin, half-lives and adsorption
amounts of pesticides to plants and sediments were determined. Additionally,
the potential of pesticides for leaching to the groundwater has been determined
by calculating GUS (“Groundwater Ubiquity Score”). The results showed the
effectiveness of free surface flow constructed wetlands in organophosphate
pesticide removal. The results of this study provide key guidelines for the
design of constructed wetlands for the mitigation of organophosphate
pesticides.
    

Kaynakça

  • [1] Karpuzcu, M. E., Sedlak, D. L., Stringfellow, W. T. 2013. Biotransformation of chlorpyrifos in riparian wetlands in agricultural watersheds: implications for wetland management, Journal of Hazardous Materials 244-245(2013), 111-20.
  • [2] Pedersen, J. A., Yeager, M. A., Suffet, I. 2006. Organophosphorus insecticides in agricultural and residential runoff: Field observations and implications for total maximum daily load development, Environmental science & technology 40(7) (2006) 2120-2127.
  • [3] Vymazal, J., Březinová, T. 2015. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review, Environment international 75 (2015) 11-20.
  • [4] Singh, B. K. 2009. Organophosphorus-degrading bacteria: ecology and industrial applications, Nature Reviews Microbiology 7(2) (2009) 156.
  • [5] Delen, N., Durmuşoğlu, E., Güncan, A., Güngör, N., Turgut, C., Burçak, A. 2005. Türkiye'de Pestisit Kullanimi, Kalinti ve Organizmalarda Duyarlilik Azalişi Sorunlari, Türkiye Ziraat Mühendisliği 6 (2005).
  • [6] Tiryaki, O., Canhilal, R., Horuz, S. 2010. Tarım ilaçları kullanımı ve riskleri, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 26(2) (2010) 154-169.
  • [7] Karpouzas, D. G., Singh, B. K. 2006. Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis, Advances in microbial physiology 51 (2006) 119-225.
  • [8] Demirdöğen, B. 2010. Organophosphate pesticide poisonings and the role of serum paraoxonase 1 (PON1) enzyme in organophosphate metabolism, Türk Hijyen ve Deneysel Biyoloji Dergisi 67(2) (2010) 97-112.
  • [9] Öterler, B. 2009. 3 Tatlı Su Fitoplankton Türünün (Chlorella vulgaris beij. 1890, Scenedesmus quadricauda (turpin) bréb. 1835 ve Cyclotella meneghiniana kütz. 1844) Gelişimi Üzerine 5 Farklı Pestisitin (Azinphos-methyl, Malathion, Parathion-ethyl, Terbufos, Trichlorfon) Toksisitesi, Fen Bilimleri Enstitüsü, Trakya Üniversitesi, Edirne, 2009.
  • [10] Matamoros, V., Puigagut, J., García, J., Bayona, J. M., 2007. Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: a preliminary screening, Chemosphere 69(9) (2007) 1374-1380.
  • [11] Gill, S. L., Spurlock, F. C., Goh, K. S., Ganapathy, C. 2008. Vegetated ditches as a management practice in irrigated alfalfa, Environmental monitoring and assessment 144(1-3) (2008) 261-267.
  • [12] Sherrard, R., Bearr, J., Murray-Gulde, C., Rodgers Jr, J., Shah, Y. 2004. Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures, Environmental Pollution 127(3) (2004) 385-394.
  • [13] Cooper, C., Moore, M., Bennett, E., Smith, S., Farris, J., Milam, C., Shields, F. 2004. Innovative uses of vegetated drainage ditches for reducing agricultural runoff, Water Science and Technology 49(3) 117-123.
  • [14] Bouldin, J., Farris, J., Moore, M., Cooper, C. 2004. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes, Environmental Pollution 132(3) (2004) 403-411.
  • [15] Schulz, R., Peall, S. K., 2001. Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment, South Africa, Environmental science & technology 35(2) (2001) 422-426.
  • [16] Moore, M. T., Cooper, C. M., Smith, S., Rodgers, J.H. 2000. Pesticide mitigation capacities of constructed wetlands, In: Proceedings of a Conference on Sustainability of Wetlands and Water Resources, May 23-25, Oxford, Mississippi, eds. Holland, Marjorie M.; Warren, Melvin L.; Stanturf, John A., p. 133-134.
  • [17] Budd, R., O'Geen, A., Goh, K. S., Bondarenko, S., Gan, J. 2009. Efficacy of constructed wetlands in pesticide removal from tailwaters in the Central Valley, California, Environmental science & technology 43(8) (2009) 2925-2930.
  • [18] Gregoire, C., Elsaesser, D., Huguenot, D., Lange, J., Lebeau, T., Merli, A., Mose, R., Passeport, E., Payraudeau, S., Schütz, T. 2009. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems-a review, Climate Change, Intercropping, Pest Control and Beneficial Microorganisms, Springer2009, pp. 293-338.
  • [19] Rogers, M. R., Stringfellow, W. T. 2009. Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches, Chemosphere 75(1) (2009) 109-114.
  • [20] Karpuzcu, M. E., Sedlak, D. L., Stringfellow, W. T. 2013. Biotransformation of chlorpyrifos in riparian wetlands in agricultural watersheds: Implications for wetland management, Journal of hazardous materials 244 (2013) 111-120.
  • [21] Swift, M. C., Niemi, G. J., Perry, J. A. 2015. Predictive Modeling and Experimental Design of Lotic Mesocosms.
  • [22] Rodgers, J. H., Dunn, A. 1992. Developing design guidelines for constructed wetlands to remove pesticides from agricultural runoff, Ecological Engineering 1(1) (1992) 83-95.
  • [23] Moore, M., Schulz, R., Cooper, C., Smith, S., Rodgers, J. 2002. Mitigation of chlorpyrifos runoff using constructed wetlands, Chemosphere 46(6) (2002) 827-835.
  • [24] Moore, M., Rodgers Jr, J., Cooper, C., Smith Jr S. 2000. Constructed wetlands for mitigation of atrazine-associated agricultural runoff, Environmental pollution 110(3) 393-399.
  • [25] Detenbeck, N. E., Hermanutz, R., Allen, K., Swift, M. C. 1996. Fate and effects of the herbicide atrazine in flow‐through wetland mesocosms, Environmental Toxicology and Chemistry 15(6) (1996) 937-946.
  • [26] Rogers, M. R., Stringfellow, W. T. 2009. Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches, Chemosphere 75(1) (2009) 109-14.
  • [27] Moore, M. T., Kroger, R., Locke, M. A., Lizotte, R. E., Testa, S. 2014. 3rd, C.M. Cooper, Diazinon and permethrin mitigation across a grass-wetland buffer, Bulletin of Environmental Contamination and Toxicology 93(5) (2014) 574-9.
  • [28] Dabrowski, J.,Peall, S., Reinecke, A., Liess, M., Schulz, R. 2002. Runoff-related pesticide input into the Lourens River, South Africa: basic data for exposure assessment and risk mitigation at the catchment scale, Water, Air, and Soil Pollution 135(1-4) (2002) 265-283.
  • [29] Cheng, S., Vidakovic-Cifrek, Ž. Grosse, W., Karrenbrock, F. 2002. Xenobiotics removal from polluted water by a multifunctional constructed wetland, Chemosphere 48(4) (2002) 415-418.
  • [30] Mahabali, S., Spanoghe, P. 2014. Mitigation of two insecticides by wetland plants: feasibility study for the treatment of agricultural runoff in Suriname (South America), Water, Air, & Soil Pollution 225(1) (2014) 1771.
  • [31] McKinlay, R., Kasperek, K. 1999. Observations on decontamination of herbicide-polluted water by marsh plant systems, Water Research 33(2) (1999) 505-511.
  • [32] Locke, M., Weaver, R., Zablotowicz, R., Steinriede, R., Bryson, C., Cullum, R. 2011. Constructed wetlands as a component of the agricultural landscape: mitigation of herbicides in simulated runoff from upland drainage areas, Chemosphere 83(11) (2011) 1532-1538.
  • [33] Stearman, G. K., George, D. B., Carlson, K., Lansford, S. 2003. Pesticide removal from container nursery runoff in constructed wetland cells, Journal of environmental quality 32(4) 1548-1556.
  • [34] Tokatlı, C., Köse, E., Uğurluoğlu, A., Çiçek, A., Emiroğlu, Ö. 2014. Use of Geographic Information System (GIS) to Evaluate the Water Quality of Gala Lake (Edirne), Sigma 32 490-501.
  • [35] Köse, E. 2015. Meriç Deltası ve civarının florası. .Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 59s, Edirne.
  • [36] Benhabib, K., Town, R. M., van Leeuwen, H. P. 2009. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME), Langmuir 25(6) 3381-3386.
  • [37] Wu, J., Laird, D. A. 2004. Interactions of chlorpyrifos with colloidal materials in aqueous systems, Journal of environmental quality 33(5) 1765-1770.
  • [38] Goodrich, J.A., Lykins, B.W., Clark, R. M. 1991. Drinking water from agriculturally contaminated groundwater, Journal of Environmental Quality 20(4) (1991) 707-717.
  • [39] Gerstl, Z. 1990. Estimation of organic chemical sorption by soils, Journal of contaminant hydrology 6(4) (1990) 357-375.
  • [40] Sabljić, A., Güsten, H., Verhaar, H., Hermens, J. 1995. QSAR modelling of soil sorption. Improvements and systematics of log K OC vs. log K OW correlations, Chemosphere 31(11) (1995) 4489-4514.
  • [41] Howard, P.H. 1991 Handbook of environmental fate and exposure data: for organic chemicals, volume III pesticides, CRC press, United States, 103s.
  • [42] Arienzo, M., Crisanto, T., Sanchez-Martin, M. J., Sanchez-Camazano, M. 1994. Effect of soil characteristics on adsorption and mobility of (14C) diazinon, Journal of Agricultural and Food Chemistry 42(8) (1994) 1803-1808.
  • [43] Nemeth-Konda, L., Füleky, G., Morovjan, G., Csokan, P. 2002. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil, Chemosphere 48(5) 545-552.
  • [44] Hernández-Soriano, M. C., Peña, A., Mingorance, M. D. 2007. Retention of organophosphorous insecticides on a calcareous soil modified by organic amendments and a surfactant, Science of the total environment 378(1) (2007) 109-113.
  • [45] Liu, B., McConnell, L., Torrents, A. 2001. Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay, Chemosphere 44(6) (2001) 1315-1323.
  • [46] Karpuzcu, M. E. 2012. Wetlands as Best Management Practices to Mitigate Agricultural Nonpoint Source Pollution, Civil and Environmental Engineering UC Berkeley, UC Berkeley, California, 2012.
  • [47] Walker, W., Cripe, C., Pritchard, P., Bourquin, A. 1988. Biological and abiotic degradation of xenobiotic compounds in in vitro estaurine water and sediment/water systems, Chemosphere 17(12) (1988) 2255-2270.
  • [48] Bondarenko, S., Gan, J. 2004. Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream sediments, Environmental Toxicology and Chemistry 23(8) (2004) 1809-1814.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mahmut Ekrem Karpuzcu 0000-0002-6245-9621

Çağrı Şahin 0000-0002-8886-6698

Yayımlanma Tarihi 1 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 1

Kaynak Göster

APA Karpuzcu, M. E., & Şahin, Ç. (2019). Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 148-156. https://doi.org/10.19113/sdufenbed.455538
AMA Karpuzcu ME, Şahin Ç. Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2019;23(1):148-156. doi:10.19113/sdufenbed.455538
Chicago Karpuzcu, Mahmut Ekrem, ve Çağrı Şahin. “Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 1 (Nisan 2019): 148-56. https://doi.org/10.19113/sdufenbed.455538.
EndNote Karpuzcu ME, Şahin Ç (01 Nisan 2019) Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 1 148–156.
IEEE M. E. Karpuzcu ve Ç. Şahin, “Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 23, sy. 1, ss. 148–156, 2019, doi: 10.19113/sdufenbed.455538.
ISNAD Karpuzcu, Mahmut Ekrem - Şahin, Çağrı. “Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/1 (Nisan 2019), 148-156. https://doi.org/10.19113/sdufenbed.455538.
JAMA Karpuzcu ME, Şahin Ç. Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:148–156.
MLA Karpuzcu, Mahmut Ekrem ve Çağrı Şahin. “Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 1, 2019, ss. 148-56, doi:10.19113/sdufenbed.455538.
Vancouver Karpuzcu ME, Şahin Ç. Organofosfatlı Pestisitlerin Pilot Ölçekli Sulak Alan Reaktörlerinde Gideriminin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(1):148-56.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.