Araştırma Makalesi
BibTex RIS Kaynak Göster

Betonarme Minarelerin Zemin-Yapı Etkileşimiyle Rüzgâr Yükü Hesaplamasında TS498 ve TS-EN-1991-1-4’ün Kullanılması

Yıl 2019, Cilt: 23 Sayı: Özel, 84 - 93, 01.03.2019
https://doi.org/10.19113/sdufenbed.538551

Öz

Minareler,
İslami mimarinin en güzel, anlamlı ve bir o kadar da narin eserleri arasında
bulunmaktadır. Bu narin yapılar, ilk zamanlarda, yığma ve kısa bir şekilde
yapılmış olmalarına rağmen, zaman ilerledikçe, betonarme, ince cidarlı ve uzun
minarelerin yapımı tercih edilmiştir. Bu durum ise birçok betonarme minarenin
rüzgâr ve deprem kuvvetleri altında hasar görmesine veya yıkılmasına sebep
olmuştur. Bu konu ile ilgili olarak, şiddetli rüzgârlardan dolayı, Türkiye’de
de birçok minare yıkılması olayı gerçekleşmiştir. Bu sebepten dolayı, bu
çalışmada, TS498 ve TS-EN-1991-1-4 standartlarına göre, seçilen bir betonarme
minareye etkiyen rüzgâr yükleri ayrıntılı bir şekilde hesaplanmıştır. Yapılan
hesaplamalarda ayrıca, zemin yapı etkileşiminin, hesaplanan rüzgâr yüklerine
etkileri de incelenmiştir. Çalışmanın sonunda, yapılan hesaplamalar sonucunda
elde edilen rüzgâr yüklerinin karşılaştırılması yapılmıştır. Elde edilen
veriler, zemin yapı etkileşiminin rüzgâr yükleri üzerinde olumsuz bir etkisi
olduğunu, bunları arttırdığını ve rüzgar yükü hesaplamalarında zemin yapı
etkileşiminin de dahil edilmesi gerektiğini göstermektedir.

Kaynakça

  • [1] Doğangün, A., Acar, R., Livaoğlu, R., Tuluk, İ. 2006. Performance of Masonry Minarets against Earthquakes and Winds in Turkey. 1st International Conference on Restoration of Heritage Masonry Structures, 24-27 April, Cairo, Egypt.
  • [2] Temüz, H. T. 2007. Minarelerin rüzgar yükleri altında davranışlarının incelenmesi ve bunların rüzgara göre hesabı. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 108s, Trabzon
  • [3] DHA. 2015. İzmir’de fırtına, 36 metrelik minareyi devirdi.http://www.haberturk.com/gundem/haber/1041867-izmirde-firtina-36-metrelik-minareyi-devirdi (Erişim Tarihi: 02.04.2018).
  • [4] Pekgökgöz, R. K., Taş, G. 2017. Ayarlı Kütle Sönümleyicili Yüksek Minarelerin Dinamik Analizi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(1), 265-282.
  • [5] Sezen, H., Acar, R., Doğangün, A., Livaoğlu, R. 2008. Dynamic analysis and seismic performance of reinforced concrete minarets. Engineering Structures, 30, 2253-2264.
  • [6] Doğangün, A. 2004. Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey. Engineering Structures, 26, 841-856.
  • [7] Peña, F., Lourenço, P. B., Mendes, N., Oliveira, D. V. 2010. Numerical models for the seismic assessment of an old masonry tower. Engineering Structures, 32(5), 1466-1478.
  • [8] Livaoglu, R. 2014. The numerical and empirical evaluation of chimneys considering soil structure interaction and high-temperature effects. Soil Dynamics and Earthquake Engineering, 66, 178-190.
  • [9] Ortiz-Cordero, R., Fernández, R. E. H. 2017. Multivariate study and proportion study for classification and dating of Islamic Al-Andalus’ minarets: A first approach. Journal of Cultural Heritage, 24, 117-123.
  • [10] Turkish Standard Institute 1997. Turkish Standard, TS498: The Calculation Values of Loads used in Designing Structural Elements. Ankara, Turkey, 21 p.
  • [11] Turkish Standard Institute 2007. Turkish Standard, TS-EN-1991-1-4: Actions on structures - Part 1- 4: General actions - Wind actions, Ankara, Turkey, 122 p.
  • [12] Handa, K. 2006. European Standard For Wınd Loads Notes (Eurocode EN 1991-1-4 Wind Actions), 10 p.
  • [13] Türkeli, E. 2009. Analyzing wind effects on slender reinforced concrete chimneys and calculation of these structures according to wind loads. Ondokuz Mayıs University, Institute of Life Sciences, Ms. Thesis, 203 p., Samsun.
  • [14] Wilson, E.L. 2000. “Sap 2000: Integrated Finite Element Analysis and Design of Structures”, Computers & Structures: Berkeley, CA.
  • [15] Livaoğlu, R., Doğangün, A. 2007. Effect of foundation embedment on seismic behavior of elevated tanks considering fluid–structure-soil interaction. Soil Dynamics and Earthquake Engineering, 27(9), 855-863.
  • [16] Lysmer, J., Kuhlemeyer, R. L. 1969. Finite dynamic model for infinite media, Journal of the Engineering Mechanics Division, 95(4), 859-878.
  • [17] Bao, H., Hatzor, Y. H., Huang, X. 2012. A new viscous boundary condition in the two-dimensional discontinuous deformation analysis method for wave propagation problems. Rock Mechanics and Rock Engineering, 45(5), 919-928. [18] Türkeli, E., Livaoğlu, R., & Doğangün, A. 2015. Dynamic response of traditional and buttressed reinforced concrete minarets. Engineering Failure Analysis, 49, 31-48.
  • [18] Türkeli, E., Livaoğlu, R., & Doğangün, A. 2015. Dynamic response of traditional and buttressed reinforced concrete minarets. Engineering Failure Analysis, 49, 31-48.

The use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction

Yıl 2019, Cilt: 23 Sayı: Özel, 84 - 93, 01.03.2019
https://doi.org/10.19113/sdufenbed.538551

Öz

The minarets
are among the most beautiful, meaningful and delicate works of Islamic
architecture. At early times, although these slender structures were built
short and with masonry stone, as time progressed, the construction of minarets
with reinforced concrete and that are thin-walled and long were preferred. This
has caused many reinforced concrete minarets to be damaged or destroyed under
wind and earthquake forces. With regard to this issue, because of the severe
winds, many minaret collapse incident took place in Turkey. Due to this reason,
in this study, the wind loads acting on a selected reinforced concrete minaret
have been calculated in details according to TS498 and TS-EN-1991-1-4
standards. In the calculations made, the effects of soil structure interaction
on the calculated wind loads were also examined. At the end of the study, the
wind loads obtained in the calculations were compared. The obtained results
show that soil structure interaction is a negative effect on wind loads, this
interaction increases them and that the soil structure interaction should be
included in wind load calculations.

Kaynakça

  • [1] Doğangün, A., Acar, R., Livaoğlu, R., Tuluk, İ. 2006. Performance of Masonry Minarets against Earthquakes and Winds in Turkey. 1st International Conference on Restoration of Heritage Masonry Structures, 24-27 April, Cairo, Egypt.
  • [2] Temüz, H. T. 2007. Minarelerin rüzgar yükleri altında davranışlarının incelenmesi ve bunların rüzgara göre hesabı. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 108s, Trabzon
  • [3] DHA. 2015. İzmir’de fırtına, 36 metrelik minareyi devirdi.http://www.haberturk.com/gundem/haber/1041867-izmirde-firtina-36-metrelik-minareyi-devirdi (Erişim Tarihi: 02.04.2018).
  • [4] Pekgökgöz, R. K., Taş, G. 2017. Ayarlı Kütle Sönümleyicili Yüksek Minarelerin Dinamik Analizi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(1), 265-282.
  • [5] Sezen, H., Acar, R., Doğangün, A., Livaoğlu, R. 2008. Dynamic analysis and seismic performance of reinforced concrete minarets. Engineering Structures, 30, 2253-2264.
  • [6] Doğangün, A. 2004. Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey. Engineering Structures, 26, 841-856.
  • [7] Peña, F., Lourenço, P. B., Mendes, N., Oliveira, D. V. 2010. Numerical models for the seismic assessment of an old masonry tower. Engineering Structures, 32(5), 1466-1478.
  • [8] Livaoglu, R. 2014. The numerical and empirical evaluation of chimneys considering soil structure interaction and high-temperature effects. Soil Dynamics and Earthquake Engineering, 66, 178-190.
  • [9] Ortiz-Cordero, R., Fernández, R. E. H. 2017. Multivariate study and proportion study for classification and dating of Islamic Al-Andalus’ minarets: A first approach. Journal of Cultural Heritage, 24, 117-123.
  • [10] Turkish Standard Institute 1997. Turkish Standard, TS498: The Calculation Values of Loads used in Designing Structural Elements. Ankara, Turkey, 21 p.
  • [11] Turkish Standard Institute 2007. Turkish Standard, TS-EN-1991-1-4: Actions on structures - Part 1- 4: General actions - Wind actions, Ankara, Turkey, 122 p.
  • [12] Handa, K. 2006. European Standard For Wınd Loads Notes (Eurocode EN 1991-1-4 Wind Actions), 10 p.
  • [13] Türkeli, E. 2009. Analyzing wind effects on slender reinforced concrete chimneys and calculation of these structures according to wind loads. Ondokuz Mayıs University, Institute of Life Sciences, Ms. Thesis, 203 p., Samsun.
  • [14] Wilson, E.L. 2000. “Sap 2000: Integrated Finite Element Analysis and Design of Structures”, Computers & Structures: Berkeley, CA.
  • [15] Livaoğlu, R., Doğangün, A. 2007. Effect of foundation embedment on seismic behavior of elevated tanks considering fluid–structure-soil interaction. Soil Dynamics and Earthquake Engineering, 27(9), 855-863.
  • [16] Lysmer, J., Kuhlemeyer, R. L. 1969. Finite dynamic model for infinite media, Journal of the Engineering Mechanics Division, 95(4), 859-878.
  • [17] Bao, H., Hatzor, Y. H., Huang, X. 2012. A new viscous boundary condition in the two-dimensional discontinuous deformation analysis method for wave propagation problems. Rock Mechanics and Rock Engineering, 45(5), 919-928. [18] Türkeli, E., Livaoğlu, R., & Doğangün, A. 2015. Dynamic response of traditional and buttressed reinforced concrete minarets. Engineering Failure Analysis, 49, 31-48.
  • [18] Türkeli, E., Livaoğlu, R., & Doğangün, A. 2015. Dynamic response of traditional and buttressed reinforced concrete minarets. Engineering Failure Analysis, 49, 31-48.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erdem Türkeli

Yayımlanma Tarihi 1 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: Özel

Kaynak Göster

APA Türkeli, E. (2019). The use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, 84-93. https://doi.org/10.19113/sdufenbed.538551
AMA Türkeli E. The use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction. SDÜ Fen Bil Enst Der. Mart 2019;23:84-93. doi:10.19113/sdufenbed.538551
Chicago Türkeli, Erdem. “The Use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, Mart (Mart 2019): 84-93. https://doi.org/10.19113/sdufenbed.538551.
EndNote Türkeli E (01 Mart 2019) The use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 84–93.
IEEE E. Türkeli, “The use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction”, SDÜ Fen Bil Enst Der, c. 23, ss. 84–93, 2019, doi: 10.19113/sdufenbed.538551.
ISNAD Türkeli, Erdem. “The Use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 (Mart 2019), 84-93. https://doi.org/10.19113/sdufenbed.538551.
JAMA Türkeli E. The use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction. SDÜ Fen Bil Enst Der. 2019;23:84–93.
MLA Türkeli, Erdem. “The Use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, 2019, ss. 84-93, doi:10.19113/sdufenbed.538551.
Vancouver Türkeli E. The use of TS498 and TS-EN-1991-1-4 in the Wind Load Calculation of Reinforced Concrete Minarets Considering Soil-Structure Interaction. SDÜ Fen Bil Enst Der. 2019;23:84-93.

e-ISSN: 1308-6529