Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Biyokömür Takviyeli Polivinil Alkol /Mısır Nişastası Biyokompozitler

Yıl 2020, Cilt 24, Sayı 1, 35 - 42, 20.04.2020
https://doi.org/10.19113/sdufenbed.568229

Öz

Biyokömürün polimer kompozitlerde kullanılması, atığın katma değerli bir malzeme olarak değerlenmesini sağlayan ve aynı zamanda biyo-atığı akıllıca azaltan sürdürülebilir bir yaklaşım olarak düşünülebilir. Bu çalışma, polivinil alkol /mısır nişastası kompozitlerinde biyokömürün dolgu maddesi olarak değerlendirilmesine odaklanmıştır. Kompozitler, plastikleştirici olarak sitrik asit ve çapraz bağlayıcı olarak glutaraldehit kullanılarak çözelti karıştırma ve döküm yöntemi ile hazırlandı. PVA / nişasta matrisindeki biyokömür dağılımı optik mikroskop ile değerlendirildi. Kompozitlerin yapısal özellikleri FTIR spektroskopisi kullanılarak karakterize edildi. Biyokömür oranının (ağırlıkça %0-12) PVA/nişasta karışımının ısıl kararlılığı üzerindeki etkileri diferansiyel taramalı kalorimetre ve termogravimetrik analizle belirlendi. PVA/nişasta /biyokömür kompozitlerin bozunma sıcaklıkları, PVA/nişasta kompozitlerine kıyasla azaldı. 

Kaynakça

  • [1] Yurdakul, H., Durukan, O., Seyhan, A.T., Celebi, H., Oksuzoglu, M., Turan, S. 2013. Microstructural characterization of corn starch-based porous thermoplastic composites filled with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 127(1), 812-820.
  • [2] Zanela, J., Casagrande, M., Reis, M.O., Grossmann, M.V.E., Yamashita. F. 2019. Biodegradable Sheets of Starch/Polyvinyl Alcohol (PVA): Effects of PVA Molecular Weight and Hydrolysis Degree. Waste and Biomass Valorization, 10(2), 319-326.
  • [3] Singha, A.S., Priya, B., Pathania, D. 2015. Cornstarch/Poly(vinyl alcohol) Biocomposite Blend Films: Mechanical Properties, Thermal Behavior, Fire Retardancy, and Antibacterial Activity. International Journal of Polymer Analysis and Characterization, 20(4), 357-366.
  • [4] Giorcelli, M., Savi, P., Khan, A., Tagliaferro, A. 2019. Analysis of biochar with different pyrolysis temperatures used as filler in epoxy resin composites. Biomass & Bioenergy, 122, 466-471.
  • [5] Srivastava, K.R., Singh, M.K., Mishra, P.K., Srivastava P. 2019. Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. Journal of Polymer Research, 26(4),95.
  • [6] Sreekumar, P.A., Al-Harthi, M.A., De S.K. 2012. Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. Journal of Composite Materials, 46(25), 3181-3187.
  • [7] Noshirvani, N., Ghanbarzadeh, B., Fasihi, H., Almasi, H. 2016. Starch-PVA Nanocomposite Film Incorporated with Cellulose Nanocrystals and MMT: A Comparative Study. International Journal of Food Engineering, 12(1), 37-48.
  • [8] Guimaraes, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., Tonoli G.H.D. 2015. Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Industrial Crops and Products, 70, 72-83.
  • [9] Jose, J., De, S.K., AlMa'adeed, M.A.A., Dakua, J.B., Sreekumar, P.A., Sougrat, R., Al-Harthi M.A. 2015. Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend. Starch-Starke, 67(1-2), 147-153.
  • [10] Massoumi, B., Jafarpour, P., Jaymand, M., Entezami A.A. 2015. Functionalized multiwalled carbon nanotubes as reinforcing agents for poly(vinyl alcohol) and poly(vinyl alcohol)/starch nanocomposites: synthesis, characterization and properties. Polymer International, 64(5), 689-695.
  • [11] Bin-Dahman, O.A., Rahaman, M., Khastgir, D., Al-Harthi M.A. 2018. Electrical and Dielectric Properties of Poly(Vinyl Alcohol)/Starch/ Graphene Nanocomposites. Canadian Journal of Chemical Engineering, 96(4), 903-911.
  • [12] Bin-Dahman, O.A., Shehzad, F., Al-Harthi M.A. 2017. Influence of graphene on the non-isothermal crystallization kinetics of poly(vinyl alcohol)/starch composite. Journal of Polymer Research, 25(5), 1-10.
  • [13] Wu, Z.J., Huang, Y.C., Xiao, L.J., Lin, D.R., Yang, Y.M., Wang, H.W., Yang, Y.Q., Wu, D.T., Chen, H., Zhang, Q., Qin, W., Pu S.Y. 2019. Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. International Journal of Biological Macromolecules, 123, 569-575.
  • [14] Das, O., Sarmah, A.K., Bhattacharyya D. 2015. A novel approach in organic waste utilization through biochar addition in wood/ polypropylene composites. Waste Management, 38, 132-140.
  • [15] Zhang, J., Tahmasebi, A., Omoriyekomwan, J.E., Yu, J.L. 2019. Production of carbon nanotubes on bio-char at low temperature via microwave-assisted CVD using Ni catalyst. Diamond and Related Materials, 91, 98-106.
  • [16] Amin, F.R., Huang, Y., He, Y.F., Zhang, R.H., Liu, G.Q., Chen, C. 2016. Biochar applications and modern techniques for characterization. Clean Technologies and Environmental Policy, 18(5), 1457-1473.
  • [17] Kaya, N., Yildiz, Z., Ceylan, S. 2018. Preparation and Characterisation of Biochar from Hazelnut Shell and Its Adsorption Properties for Methylene Blue Dye. Journal of Polytechnic-Politeknik Dergisi, 21(4), 765-776.
  • [18] Elibol, P.S. 2019. Effect of Biochar on Phytoextraction of Persistent Organic Pollutants. Turkish Journal of Agriculture-Food Science and Technology, 7(3), 516-522.
  • [19] Ahmetli, G., Kocaman, S., Ozaytekin, I., Bozkurt, P. 2013. Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources. Polymer Composites, 34(4), 500-509.
  • [20] Khan, A., Savi, P., Quaranta, S., Rovere, M., Giorcelli, M., Tagliaferro, A., Rosso, C., Jia, C. 2017. Low-cost carbon fillers to improve mechanical properties and conductivity of epoxy composites. Polymers, 9(12), 642.
  • [21] Li, S., Huang, A., Chen, Y.J., Li, D., Turng, L.S. 2018. Highly filled biochar/ultra-high molecularweight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Composites Part B: Engineering, 153, 277-284.
  • [22] Zhang, Q., Yi, W., Li, Z., Wang, L., Cai, H. 2018. Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers, 10(3), 286.
  • [23] Das, O., Bhattacharyya, D., Hui, D., Lau K.T. 2016. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Composites Part B: Engineering, 106, 120-128.
  • [24] DeVallance D.B., Oporto, G.S., Quigley, P. 2016. Investigation of hardwood biochar as a replacement for wood flour in wood–polypropylene composites. Journal of Elastomers & Plastics, 48(6), 510-522.
  • [25] Ikram, S., Das, O., Bhattacharyya, D. 2016. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 91, 177-188.
  • [26] Poulose, A.M., Elnour, A.Y., Anis, A., Shaikh, H., Al-Zahrani, S., George, J., Al-Wabel, M.I., Usman, A.R., Ok, Y.S., Tsang D.C. 2018. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics. Science of the total environment, 619, 311-318.
  • [27] Ho, M.P., Lau, K. T., Wang, H., Hui D. 2015. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Composites Part B: Engineering, 81, 14-25.
  • [28] Nan, N., DeVallance, D.B., Xie, X.F., Wang J.X. 2016. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites. Journal of Composite Materials, 50(9), 1161-1168.
  • [29] Mousa, M., Dong, Y. 2018. Strong Poly(Vinyl Alcohol) (PVA)/Bamboo Charcoal (BC) Nanocomposite Films with Particle Size Effect. Acs Sustainable Chemistry & Engineering, 6(1), 467-479.
  • [30] Mousa, M., Dong, Y., Davies I.J. 2018. Eco-friendly polyvinyl alcohol (PVA)/bamboo charcoal (BC) nanocomposites with superior mechanical and thermal properties. Advanced Composite Materials, 27(5), 499-509.
  • [31] Ogunsona, E.O., Misra, M., Mohanty A.K. 2017. Accelerated hydrothermal aging of biocarbon reinforced nylon biocomposites. Polymer Degradation and Stability, 139, 76-88.
  • [32] Taneli, V., Oisik, D., Laura, T. 2017. A review on new bio-based constituents for natural fiber-polymer composites, Journal of Cleaner Production, 149, 582-596.
  • [33] Das, O., Sarmah, A.K. 2015. Mechanism of waste biomass pyrolysis: effect of physical and chemical pre-treatments, Science of the Total Environment, 537, 323–334.
  • [34] Schmidt, H.P., Bucheli, T., Kammann, C., Glaser, B., Abiven, S., Leifeld, J. 2012. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar, European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.europeanbiochar.org/en/download(Erişim Tarihi: 31.03.2019).
  • [35] Cui, X., Dai, X., Khan, K.Y., Li, T., Yang, X., He Z. 2016. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata. Bioresource technology, 218, 1123-1132.
  • [36] Abdullah, Z.W., Dong Y. 2018. Preparation and characterisation of poly (vinyl) alcohol (PVA)/starch (ST)/halloysite nanotube (HNT) nanocomposite films as renewable materials. Journal of materials science, 53(5), 3455-3469.
  • [37] Priya, B., Gupta, V.K., Pathania, D., Singha, A.S. 2014. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate polymers, 109, 171-179.
  • [38] Chen, Y., Cao, X., Chang, P. R., Huneault, M.A. 2008. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch, Carbohydrate Polymers, 738–717.
  • [39] Bhattacharjee, N., Biswas A.B. 2019. Pyrolysis of orange bagasse: Comparative study and parametric influence on the product yield and their characterization. Journal of Environmental Chemical Engineering, 7(1), 102903.
  • [40] Gomes, A.M., Da Silva, P.L., Moura C.D.L., Da Silva, C.E., Ricardo, N.M., Study of the mechanical and biodegradable properties of cassava starch/chitosan/PVA blends, Macromolecular Symposia, Wiley Online Library, 2011, 220-226.
  • [41] Jose, J., De, S.K., AlMa'adeed, M.A.A., Dakua, J.B., Sreekumar, P.A., Sougrat, R., Al-Harthi M.A. 2015. Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend. Starch - Stärke, 67(1-2), 147-153.
  • [42] Jose, J., Al-Harthi M.A. 2017. Citric acid crosslinking of poly (vinyl alcohol)/starch/ graphene nanocomposites for superior properties. Iranian Polymer Journal, 26(8), 579-587.
  • [43] Nizamuddin, S., Jadhav, A., Qureshi, S.S., Baloch, H.A., Siddiqui, M., Mubarak, N., Griffin, G., Madapusi, S., Tanksale, A., Ahamed, M.I. 2019.
  • [44] Synthesis and characterization of polylactide/ rice husk hydrochar composite. Scientific Reports, 9(1), 5445.
  • [45] Wang, C., Li, Y., Ding, G., Xie, X., Jiang, M. 2013. Preparation and characterization of graphene oxide/poly (vinyl alcohol) composite nanofibers via electrospinning. Journal of Applied Polymer Science, 127(4), 3026-3032.
  • [46] Wu, Y., Tang, Q., Yang, F., Xu, L., Wang, X., Zhang, J. 2019. Mechanical and thermal properties of rice straw cellulose nanofibrils-enhanced polyvinyl alcohol films using freezing and-thawing cycle method, Cellulose, 26, 3193–3204.
  • [47] Sedaghat, E., Rostami, A. A., Ghaemy, M., Rostami, A. 2019. Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly (vinyl alcohol)/starch nanocomposite, Journal of Thermal Analysis and Calorimetry, 136, 759–769.

Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites

Yıl 2020, Cilt 24, Sayı 1, 35 - 42, 20.04.2020
https://doi.org/10.19113/sdufenbed.568229

Öz

The utilization of biochar in polymer composites can be considered as a sustainable approach that provide valorization of a waste to a value-added material and at the same time diminish biowaste in a smart way. This study is focused on the evaluation of biochar as a filler in polyvinyl alcohol /corn starch composites. The composites were prepared via solution mixing and casting method using citric acid as a plasticizer and glutaraldehyde as a cross-linker. Distribution of biochar in the PVA/starch matrix was evaluated by optical microscopy. The structural features of composites were characterized using FTIR spectroscopy. Effects of biochar loading ratio (0-12 wt%) on the thermal stability of the PVA/starch blends were determined by differential scanning calorimetry and thermogravimetric analyses. The decomposition temperatures of the PVA/starch/biochar composites decreased in comparison to PVA/starch composites. 

Kaynakça

  • [1] Yurdakul, H., Durukan, O., Seyhan, A.T., Celebi, H., Oksuzoglu, M., Turan, S. 2013. Microstructural characterization of corn starch-based porous thermoplastic composites filled with multiwalled carbon nanotubes. Journal of Applied Polymer Science, 127(1), 812-820.
  • [2] Zanela, J., Casagrande, M., Reis, M.O., Grossmann, M.V.E., Yamashita. F. 2019. Biodegradable Sheets of Starch/Polyvinyl Alcohol (PVA): Effects of PVA Molecular Weight and Hydrolysis Degree. Waste and Biomass Valorization, 10(2), 319-326.
  • [3] Singha, A.S., Priya, B., Pathania, D. 2015. Cornstarch/Poly(vinyl alcohol) Biocomposite Blend Films: Mechanical Properties, Thermal Behavior, Fire Retardancy, and Antibacterial Activity. International Journal of Polymer Analysis and Characterization, 20(4), 357-366.
  • [4] Giorcelli, M., Savi, P., Khan, A., Tagliaferro, A. 2019. Analysis of biochar with different pyrolysis temperatures used as filler in epoxy resin composites. Biomass & Bioenergy, 122, 466-471.
  • [5] Srivastava, K.R., Singh, M.K., Mishra, P.K., Srivastava P. 2019. Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. Journal of Polymer Research, 26(4),95.
  • [6] Sreekumar, P.A., Al-Harthi, M.A., De S.K. 2012. Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. Journal of Composite Materials, 46(25), 3181-3187.
  • [7] Noshirvani, N., Ghanbarzadeh, B., Fasihi, H., Almasi, H. 2016. Starch-PVA Nanocomposite Film Incorporated with Cellulose Nanocrystals and MMT: A Comparative Study. International Journal of Food Engineering, 12(1), 37-48.
  • [8] Guimaraes, M., Botaro, V.R., Novack, K.M., Teixeira, F.G., Tonoli G.H.D. 2015. Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Industrial Crops and Products, 70, 72-83.
  • [9] Jose, J., De, S.K., AlMa'adeed, M.A.A., Dakua, J.B., Sreekumar, P.A., Sougrat, R., Al-Harthi M.A. 2015. Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend. Starch-Starke, 67(1-2), 147-153.
  • [10] Massoumi, B., Jafarpour, P., Jaymand, M., Entezami A.A. 2015. Functionalized multiwalled carbon nanotubes as reinforcing agents for poly(vinyl alcohol) and poly(vinyl alcohol)/starch nanocomposites: synthesis, characterization and properties. Polymer International, 64(5), 689-695.
  • [11] Bin-Dahman, O.A., Rahaman, M., Khastgir, D., Al-Harthi M.A. 2018. Electrical and Dielectric Properties of Poly(Vinyl Alcohol)/Starch/ Graphene Nanocomposites. Canadian Journal of Chemical Engineering, 96(4), 903-911.
  • [12] Bin-Dahman, O.A., Shehzad, F., Al-Harthi M.A. 2017. Influence of graphene on the non-isothermal crystallization kinetics of poly(vinyl alcohol)/starch composite. Journal of Polymer Research, 25(5), 1-10.
  • [13] Wu, Z.J., Huang, Y.C., Xiao, L.J., Lin, D.R., Yang, Y.M., Wang, H.W., Yang, Y.Q., Wu, D.T., Chen, H., Zhang, Q., Qin, W., Pu S.Y. 2019. Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. International Journal of Biological Macromolecules, 123, 569-575.
  • [14] Das, O., Sarmah, A.K., Bhattacharyya D. 2015. A novel approach in organic waste utilization through biochar addition in wood/ polypropylene composites. Waste Management, 38, 132-140.
  • [15] Zhang, J., Tahmasebi, A., Omoriyekomwan, J.E., Yu, J.L. 2019. Production of carbon nanotubes on bio-char at low temperature via microwave-assisted CVD using Ni catalyst. Diamond and Related Materials, 91, 98-106.
  • [16] Amin, F.R., Huang, Y., He, Y.F., Zhang, R.H., Liu, G.Q., Chen, C. 2016. Biochar applications and modern techniques for characterization. Clean Technologies and Environmental Policy, 18(5), 1457-1473.
  • [17] Kaya, N., Yildiz, Z., Ceylan, S. 2018. Preparation and Characterisation of Biochar from Hazelnut Shell and Its Adsorption Properties for Methylene Blue Dye. Journal of Polytechnic-Politeknik Dergisi, 21(4), 765-776.
  • [18] Elibol, P.S. 2019. Effect of Biochar on Phytoextraction of Persistent Organic Pollutants. Turkish Journal of Agriculture-Food Science and Technology, 7(3), 516-522.
  • [19] Ahmetli, G., Kocaman, S., Ozaytekin, I., Bozkurt, P. 2013. Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources. Polymer Composites, 34(4), 500-509.
  • [20] Khan, A., Savi, P., Quaranta, S., Rovere, M., Giorcelli, M., Tagliaferro, A., Rosso, C., Jia, C. 2017. Low-cost carbon fillers to improve mechanical properties and conductivity of epoxy composites. Polymers, 9(12), 642.
  • [21] Li, S., Huang, A., Chen, Y.J., Li, D., Turng, L.S. 2018. Highly filled biochar/ultra-high molecularweight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Composites Part B: Engineering, 153, 277-284.
  • [22] Zhang, Q., Yi, W., Li, Z., Wang, L., Cai, H. 2018. Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers, 10(3), 286.
  • [23] Das, O., Bhattacharyya, D., Hui, D., Lau K.T. 2016. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Composites Part B: Engineering, 106, 120-128.
  • [24] DeVallance D.B., Oporto, G.S., Quigley, P. 2016. Investigation of hardwood biochar as a replacement for wood flour in wood–polypropylene composites. Journal of Elastomers & Plastics, 48(6), 510-522.
  • [25] Ikram, S., Das, O., Bhattacharyya, D. 2016. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 91, 177-188.
  • [26] Poulose, A.M., Elnour, A.Y., Anis, A., Shaikh, H., Al-Zahrani, S., George, J., Al-Wabel, M.I., Usman, A.R., Ok, Y.S., Tsang D.C. 2018. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics. Science of the total environment, 619, 311-318.
  • [27] Ho, M.P., Lau, K. T., Wang, H., Hui D. 2015. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Composites Part B: Engineering, 81, 14-25.
  • [28] Nan, N., DeVallance, D.B., Xie, X.F., Wang J.X. 2016. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites. Journal of Composite Materials, 50(9), 1161-1168.
  • [29] Mousa, M., Dong, Y. 2018. Strong Poly(Vinyl Alcohol) (PVA)/Bamboo Charcoal (BC) Nanocomposite Films with Particle Size Effect. Acs Sustainable Chemistry & Engineering, 6(1), 467-479.
  • [30] Mousa, M., Dong, Y., Davies I.J. 2018. Eco-friendly polyvinyl alcohol (PVA)/bamboo charcoal (BC) nanocomposites with superior mechanical and thermal properties. Advanced Composite Materials, 27(5), 499-509.
  • [31] Ogunsona, E.O., Misra, M., Mohanty A.K. 2017. Accelerated hydrothermal aging of biocarbon reinforced nylon biocomposites. Polymer Degradation and Stability, 139, 76-88.
  • [32] Taneli, V., Oisik, D., Laura, T. 2017. A review on new bio-based constituents for natural fiber-polymer composites, Journal of Cleaner Production, 149, 582-596.
  • [33] Das, O., Sarmah, A.K. 2015. Mechanism of waste biomass pyrolysis: effect of physical and chemical pre-treatments, Science of the Total Environment, 537, 323–334.
  • [34] Schmidt, H.P., Bucheli, T., Kammann, C., Glaser, B., Abiven, S., Leifeld, J. 2012. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar, European Biochar Foundation (EBC), Arbaz, Switzerland. http://www.europeanbiochar.org/en/download(Erişim Tarihi: 31.03.2019).
  • [35] Cui, X., Dai, X., Khan, K.Y., Li, T., Yang, X., He Z. 2016. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata. Bioresource technology, 218, 1123-1132.
  • [36] Abdullah, Z.W., Dong Y. 2018. Preparation and characterisation of poly (vinyl) alcohol (PVA)/starch (ST)/halloysite nanotube (HNT) nanocomposite films as renewable materials. Journal of materials science, 53(5), 3455-3469.
  • [37] Priya, B., Gupta, V.K., Pathania, D., Singha, A.S. 2014. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate polymers, 109, 171-179.
  • [38] Chen, Y., Cao, X., Chang, P. R., Huneault, M.A. 2008. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch, Carbohydrate Polymers, 738–717.
  • [39] Bhattacharjee, N., Biswas A.B. 2019. Pyrolysis of orange bagasse: Comparative study and parametric influence on the product yield and their characterization. Journal of Environmental Chemical Engineering, 7(1), 102903.
  • [40] Gomes, A.M., Da Silva, P.L., Moura C.D.L., Da Silva, C.E., Ricardo, N.M., Study of the mechanical and biodegradable properties of cassava starch/chitosan/PVA blends, Macromolecular Symposia, Wiley Online Library, 2011, 220-226.
  • [41] Jose, J., De, S.K., AlMa'adeed, M.A.A., Dakua, J.B., Sreekumar, P.A., Sougrat, R., Al-Harthi M.A. 2015. Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend. Starch - Stärke, 67(1-2), 147-153.
  • [42] Jose, J., Al-Harthi M.A. 2017. Citric acid crosslinking of poly (vinyl alcohol)/starch/ graphene nanocomposites for superior properties. Iranian Polymer Journal, 26(8), 579-587.
  • [43] Nizamuddin, S., Jadhav, A., Qureshi, S.S., Baloch, H.A., Siddiqui, M., Mubarak, N., Griffin, G., Madapusi, S., Tanksale, A., Ahamed, M.I. 2019.
  • [44] Synthesis and characterization of polylactide/ rice husk hydrochar composite. Scientific Reports, 9(1), 5445.
  • [45] Wang, C., Li, Y., Ding, G., Xie, X., Jiang, M. 2013. Preparation and characterization of graphene oxide/poly (vinyl alcohol) composite nanofibers via electrospinning. Journal of Applied Polymer Science, 127(4), 3026-3032.
  • [46] Wu, Y., Tang, Q., Yang, F., Xu, L., Wang, X., Zhang, J. 2019. Mechanical and thermal properties of rice straw cellulose nanofibrils-enhanced polyvinyl alcohol films using freezing and-thawing cycle method, Cellulose, 26, 3193–3204.
  • [47] Sedaghat, E., Rostami, A. A., Ghaemy, M., Rostami, A. 2019. Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly (vinyl alcohol)/starch nanocomposite, Journal of Thermal Analysis and Calorimetry, 136, 759–769.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Pınar Terzioğlu (Sorumlu Yazar)
Bursa Technical University
0000-0003-4114-7044
Türkiye


Fatma Nur Parın
Bursa Technical University
0000-0003-2048-2951
Türkiye

Teşekkür Synpet Technologiesis thanked for supplying the biochar.
Yayımlanma Tarihi 20 Nisan 2020
Yayınlandığı Sayı Yıl 2020, Cilt 24, Sayı 1

Kaynak Göster

Bibtex @araştırma makalesi { sdufenbed568229, journal = {Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi}, issn = {}, eissn = {1308-6529}, address = {}, publisher = {Süleyman Demirel Üniversitesi}, year = {2020}, volume = {24}, pages = {35 - 42}, doi = {10.19113/sdufenbed.568229}, title = {Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites}, key = {cite}, author = {Terzioğlu, Pınar and Parın, Fatma Nur} }
APA Terzioğlu, P. & Parın, F. N. (2020). Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites . Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 24 (1) , 35-42 . DOI: 10.19113/sdufenbed.568229
MLA Terzioğlu, P. , Parın, F. N. "Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites" . Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 (2020 ): 35-42 <https://dergipark.org.tr/tr/pub/sdufenbed/issue/53612/568229>
Chicago Terzioğlu, P. , Parın, F. N. "Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 (2020 ): 35-42
RIS TY - JOUR T1 - Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites AU - Pınar Terzioğlu , Fatma Nur Parın Y1 - 2020 PY - 2020 N1 - doi: 10.19113/sdufenbed.568229 DO - 10.19113/sdufenbed.568229 T2 - Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi JF - Journal JO - JOR SP - 35 EP - 42 VL - 24 IS - 1 SN - -1308-6529 M3 - doi: 10.19113/sdufenbed.568229 UR - https://doi.org/10.19113/sdufenbed.568229 Y2 - 2019 ER -
EndNote %0 Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites %A Pınar Terzioğlu , Fatma Nur Parın %T Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites %D 2020 %J Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi %P -1308-6529 %V 24 %N 1 %R doi: 10.19113/sdufenbed.568229 %U 10.19113/sdufenbed.568229
ISNAD Terzioğlu, Pınar , Parın, Fatma Nur . "Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 / 1 (Nisan 2020): 35-42 . https://doi.org/10.19113/sdufenbed.568229
AMA Terzioğlu P. , Parın F. N. Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites. SDÜ Fen Bil Enst Der. 2020; 24(1): 35-42.
Vancouver Terzioğlu P. , Parın F. N. Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 24(1): 35-42.
IEEE P. Terzioğlu ve F. N. Parın , "Biochar Reinforced Polyvinyl Alcohol /Corn Starch Biocomposites", Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sayı. 1, ss. 35-42, Nis. 2020, doi:10.19113/sdufenbed.568229

e-ISSN: 1308-6529