Araştırma Makalesi
BibTex RIS Kaynak Göster

High Efficiency Brushless Direct Current Motor Design for an Unmanned Ground Vehicle

Yıl 2020, Cilt: 24 Sayı: 2, 494 - 501, 26.08.2020
https://doi.org/10.19113/sdufenbed.499244

Öz

Unmanned ground vehicles (UGV) offer different study areas to researchers due to their various modules. These modules can be included sensor technologies, embedded systems, mapping and localization, trajectory tracking, mechanical design, electric motor and battery technologies. Although electric motor technology from these research areas has reached more limit design values than the other areas mentioned, different design approaches are needed due to the complex and specific constraints of unmanned vehicles. In this study, a special outer rotor brushless direct current motor (BLDC) has been designed for UGV which has multi-axis movement, low friction and high vibration. Low speed, high torque and high efficiency in the design of a BLDC is restricted to space and volume can be easily manufactured. In the study, analytical solutions by ANSYS RMxprt, 2 and 3 dimensional analyzes are performed based on finite element method
(FEA) using ANSYS Maxwell. The results obtained show the validity between the initial motivation and the design outputs and an electric motor which is producible, has been developed.

Kaynakça

  • [1] Huang, W., Wen, D., Geng, J., Zheng, N. N. 2014. Task-Specific Performance Evaluation of UGVs: Case Studies at the IVFC. IEEE Transactions on Intelligent Transportation Systems, 15(2014), 1969-1979.
  • [2] Lam, A. Y. S., Yu, J. J. Q., Hou, Y., Li, V. O. K. 2017. Coordinated Autonomous Vehicle Parking for Vehicle-to-Grid Services: Formulation and Distributed Algorithm. IEEE Transactions on Smart Grid, 9(2017), 4356-4366.
  • [3] Young, S. H., Mazzuchi, T. A., Sarkani, S. 2017. A Framework for Predicting Future System Performance in Autonomous Unmanned Ground Vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(2017), 1192-1206.
  • [4] Dickmanns, E. D. 2017. Developing the Sense of Vision for Autonomous Road Vehicles at UniBwM. Computer, 50(2017), 24-31.
  • [5] Pietras, B. 2015. New frontiers in driverless vehicles. Engineering & Technology, 10(2015), 64-67.
  • [6] Touchton, B., Galluzo, T., Kent, D., Crane, C. 2016. Perception and Planning Architecture for Autonomous Ground Vehicles. Computer, 39(2006), 40-47.
  • [7] Bresson, G., Alsayed, Z., Yu, L., Glaser, S. 2017. Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving. IEEE Transactions on Intelligent Vehicles, 2(2017), 194-220.
  • [8] Liu, J., Han, W., Liu, C., Peng, H. 2018. A New Method for the Optimal Control Problem of Path Planning for Unmanned Ground Systems. IEEE Access, 6(2018), 33251-33260.
  • [9] Silva, O.D., Mann, G. K. I., Gosine, R. G. 2015. An Ultrasonic and Vision-Based Relative Positioning Sensor for Multirobot Localization. IEEE Sensors Journal, 15(2015), 1716-1726.
  • [10] Kolakowska, E., Smith, S. F., Kristiansen, M. 2014. Constraint Optimization Model of a Scheduling Problem for a Robotic Arm in Automatic Systems. Robotics and Autonomous Systems, 62(2014), 267-280.
  • [11] Kang, J.W., Kim, B. S., Chung, M. J. 2008. Development of Assistive Mobile Robots Helping the Disabled Work in a Factory Environment. IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 12-15 Ekim, Beijing, 426-431.
  • [12] Muir, P., Neuman, C. 1987. Kinematic Modeling for Feedback Control of an Omnidirectional Wheeled Mobile Robot. IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 31 Mart-3 Nisan, Raleigh, 1772-1778.
  • [13] Zhao, D., Deng, X., Yi, J. 2009. Motion and Internal Force Control for Omnidirectional Wheeled Mobile Robots. IEEE/ASME Transactions on Mechatronics, 14(2009), 382-387.
  • [14] Huang, H. C. 2018. A Hybrid Metaheuristic Embedded System for Intelligent Vehicles Using Hypermutated Firefly Algorithm Optimized Radial Basis Function Neural Network. IEEE Transactions on Industrial Informatics, Erken Eri¸sime Açık Yayın(2018), 1-1.
  • [15] Yu, Y. 2017. Self-Paced Operation of a Wheelchair Based on a Hybrid Brain-Computer Interface Combining Motor Imagery and P300 Potential. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2017), 2516-2526.
  • [16] Tlale, N., Villiers, M. D. 2008. Kinematics and Dynamics Modelling of a Mecanum Wheeled Mobile Platform. 15th International Conference on Mechatronics and Machine Vision in Practice, 2-4 Aralık, Auckland, 657-431.
  • [17] Chau, K. T., Liu, C. L., Jiang, J. Z. 2008. Comparison of Outer-Rotor Stator-Permanent-Magnet Brushless Motor Drives for Electric Vehicles. International Conference on Electrical Machines and Systems, 17-20 Ekim, Wuhan, 2842-2847.
  • [18] El-Refaie, A. M., Jahns, T. M. 2005. Optimal Flux Weakening in Surface PM Machines Using Fractional-Slot Concentrated Windings. IEEE Transactions on Industry Applications, 41(2005), 790-800.
  • [19] El-Refaie, A. M., Zhu, Z. Q., Jahns, T. M., Howe, D. 2009. Winding Inductances of Fractional Slot Surface-Mounted Permanent Magnet Brushless Machines. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 28(2009), 1590-1606.
  • [20] Cros, J., Viarouge, P. M. 2002. Synthesis of high performance PM motors with concentrated windings. IEEE Transactions on Energy Conversion, 17(2002), 248-253.
  • [21] Wiak, S., Krawczyk, A., Dolezel, I. 2008. Advanced computer techniques in applied electromagnetics. Studies in Applied Electromagnetics (Book 30). IOS Press, 472s. 500 Ö.C. Kıvanç / Bir ˙Insansız Kara Aracı ˙Için Yüksek Verimli Fırçasız Do˘gru Akım Motoru Tasarımı
  • [22] Lungoci, C. M., Geoergescu, M., Calin, M. D. 2012. Electrical Motor Types for Vehicle Propulsion. 13th International Conference on Optimization of Electrical and Electronic Equipment, 24-26 Mayıs, Brasov, 635-640.
  • [23] Carraro, E., Bianchi, N., Zhang, S., Koch, M. 2018. Design and Performance Comparison of Fractional Slot Concentrated Winding Spoke Type Synchronous Motors With Different Slot-Pole Combinations. IEEE Transactions on Industry Applications, 54(2018), 2276-2284.
  • [24] Hanselman, D. C. 2003. Brushless permanent magnet motor design. 2nd edition, The Writers’ Collective, 392s.
  • [25] Hendershot, J. R., Miller, T. J. E. 2010. Design of brushless permanent-magnet machines. 2nd edition, Motor Design Books LLC, 822s.
  • [26] Bianchi, N., Bolognani, S., Luise, F. 2005. Analysis and Design of a PM Brushless Motor for High-Speed Operations. IEEE Transactions on Energy Conversion, 20(2005), 629-637.
  • [27] Ishak, D., Zhu, Z. Q., Howe, D. 2006. Comparison of PM Brushless Motors, Having Either All Teeth or Alternate Teeth Wound. IEEE Transactions on Energy Conversion, 21(2006), 95-103.

Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı

Yıl 2020, Cilt: 24 Sayı: 2, 494 - 501, 26.08.2020
https://doi.org/10.19113/sdufenbed.499244

Öz

İnsansız kara araçları (İKA) sahip oldukları farklı modüller sebebiyle araştırmacılara çeşitli çalışma alanları sunmaktadır. Bu modüller sensör teknolojileri, gömülü sistemler, haritalandırma ve konumlama, yörünge takibi, mekanik tasarım, elektrik motoru ve batarya teknolojileri gibi alanlardan oluşabilmektedir. Bu araştırma alanlarından elektrik motoru teknolojisinde her ne kadar bahsedilen diğer alanlara göre daha fazla limit tasarım değerlerine ulaşılmış olsa da insansız araçların sahip oldukları karmaşık ve kendine özgü kısıtlar sebebiyle farklı tasarım yaklaşımlarına ihtiyaç duyulmaktadır. Yapılan çalışmada çok yönlü hareket kabiliyetli, düşük sürtünmeli ve yüksek titreşimli bir İKA için özel bir dış rotorlu fırçasız doğru akım motoru (FDAM) tasarlanmıştır. Yapılan tasarımda düşük hız, yüksek moment ve yüksek verimde bir FDAM’u kısıtlı alan ve hacim koşulları göz önünde bulundurularak kolay imal edilebilir bir yapıda geliştirilmiştir. Çalışmada analitik çözümler ANSYS RMxprt, 2 ve 3 boyutlu analizler ise sonlu elemanlar yöntemine (SEY) dayanan ANSYS Maxwell ile yapılmıştır. Elde edilen sonuçlar, başlangıç motivasyonu ile tasarım çıktıları arasındaki uygunluğu göstermiş ve üretilebilir bir elektrik motoru geliştirilmiştir.

Kaynakça

  • [1] Huang, W., Wen, D., Geng, J., Zheng, N. N. 2014. Task-Specific Performance Evaluation of UGVs: Case Studies at the IVFC. IEEE Transactions on Intelligent Transportation Systems, 15(2014), 1969-1979.
  • [2] Lam, A. Y. S., Yu, J. J. Q., Hou, Y., Li, V. O. K. 2017. Coordinated Autonomous Vehicle Parking for Vehicle-to-Grid Services: Formulation and Distributed Algorithm. IEEE Transactions on Smart Grid, 9(2017), 4356-4366.
  • [3] Young, S. H., Mazzuchi, T. A., Sarkani, S. 2017. A Framework for Predicting Future System Performance in Autonomous Unmanned Ground Vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(2017), 1192-1206.
  • [4] Dickmanns, E. D. 2017. Developing the Sense of Vision for Autonomous Road Vehicles at UniBwM. Computer, 50(2017), 24-31.
  • [5] Pietras, B. 2015. New frontiers in driverless vehicles. Engineering & Technology, 10(2015), 64-67.
  • [6] Touchton, B., Galluzo, T., Kent, D., Crane, C. 2016. Perception and Planning Architecture for Autonomous Ground Vehicles. Computer, 39(2006), 40-47.
  • [7] Bresson, G., Alsayed, Z., Yu, L., Glaser, S. 2017. Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving. IEEE Transactions on Intelligent Vehicles, 2(2017), 194-220.
  • [8] Liu, J., Han, W., Liu, C., Peng, H. 2018. A New Method for the Optimal Control Problem of Path Planning for Unmanned Ground Systems. IEEE Access, 6(2018), 33251-33260.
  • [9] Silva, O.D., Mann, G. K. I., Gosine, R. G. 2015. An Ultrasonic and Vision-Based Relative Positioning Sensor for Multirobot Localization. IEEE Sensors Journal, 15(2015), 1716-1726.
  • [10] Kolakowska, E., Smith, S. F., Kristiansen, M. 2014. Constraint Optimization Model of a Scheduling Problem for a Robotic Arm in Automatic Systems. Robotics and Autonomous Systems, 62(2014), 267-280.
  • [11] Kang, J.W., Kim, B. S., Chung, M. J. 2008. Development of Assistive Mobile Robots Helping the Disabled Work in a Factory Environment. IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 12-15 Ekim, Beijing, 426-431.
  • [12] Muir, P., Neuman, C. 1987. Kinematic Modeling for Feedback Control of an Omnidirectional Wheeled Mobile Robot. IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 31 Mart-3 Nisan, Raleigh, 1772-1778.
  • [13] Zhao, D., Deng, X., Yi, J. 2009. Motion and Internal Force Control for Omnidirectional Wheeled Mobile Robots. IEEE/ASME Transactions on Mechatronics, 14(2009), 382-387.
  • [14] Huang, H. C. 2018. A Hybrid Metaheuristic Embedded System for Intelligent Vehicles Using Hypermutated Firefly Algorithm Optimized Radial Basis Function Neural Network. IEEE Transactions on Industrial Informatics, Erken Eri¸sime Açık Yayın(2018), 1-1.
  • [15] Yu, Y. 2017. Self-Paced Operation of a Wheelchair Based on a Hybrid Brain-Computer Interface Combining Motor Imagery and P300 Potential. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2017), 2516-2526.
  • [16] Tlale, N., Villiers, M. D. 2008. Kinematics and Dynamics Modelling of a Mecanum Wheeled Mobile Platform. 15th International Conference on Mechatronics and Machine Vision in Practice, 2-4 Aralık, Auckland, 657-431.
  • [17] Chau, K. T., Liu, C. L., Jiang, J. Z. 2008. Comparison of Outer-Rotor Stator-Permanent-Magnet Brushless Motor Drives for Electric Vehicles. International Conference on Electrical Machines and Systems, 17-20 Ekim, Wuhan, 2842-2847.
  • [18] El-Refaie, A. M., Jahns, T. M. 2005. Optimal Flux Weakening in Surface PM Machines Using Fractional-Slot Concentrated Windings. IEEE Transactions on Industry Applications, 41(2005), 790-800.
  • [19] El-Refaie, A. M., Zhu, Z. Q., Jahns, T. M., Howe, D. 2009. Winding Inductances of Fractional Slot Surface-Mounted Permanent Magnet Brushless Machines. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 28(2009), 1590-1606.
  • [20] Cros, J., Viarouge, P. M. 2002. Synthesis of high performance PM motors with concentrated windings. IEEE Transactions on Energy Conversion, 17(2002), 248-253.
  • [21] Wiak, S., Krawczyk, A., Dolezel, I. 2008. Advanced computer techniques in applied electromagnetics. Studies in Applied Electromagnetics (Book 30). IOS Press, 472s. 500 Ö.C. Kıvanç / Bir ˙Insansız Kara Aracı ˙Için Yüksek Verimli Fırçasız Do˘gru Akım Motoru Tasarımı
  • [22] Lungoci, C. M., Geoergescu, M., Calin, M. D. 2012. Electrical Motor Types for Vehicle Propulsion. 13th International Conference on Optimization of Electrical and Electronic Equipment, 24-26 Mayıs, Brasov, 635-640.
  • [23] Carraro, E., Bianchi, N., Zhang, S., Koch, M. 2018. Design and Performance Comparison of Fractional Slot Concentrated Winding Spoke Type Synchronous Motors With Different Slot-Pole Combinations. IEEE Transactions on Industry Applications, 54(2018), 2276-2284.
  • [24] Hanselman, D. C. 2003. Brushless permanent magnet motor design. 2nd edition, The Writers’ Collective, 392s.
  • [25] Hendershot, J. R., Miller, T. J. E. 2010. Design of brushless permanent-magnet machines. 2nd edition, Motor Design Books LLC, 822s.
  • [26] Bianchi, N., Bolognani, S., Luise, F. 2005. Analysis and Design of a PM Brushless Motor for High-Speed Operations. IEEE Transactions on Energy Conversion, 20(2005), 629-637.
  • [27] Ishak, D., Zhu, Z. Q., Howe, D. 2006. Comparison of PM Brushless Motors, Having Either All Teeth or Alternate Teeth Wound. IEEE Transactions on Energy Conversion, 21(2006), 95-103.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ömer Cihan Kıvanç 0000-0003-0880-134X

Yayımlanma Tarihi 26 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 24 Sayı: 2

Kaynak Göster

APA Kıvanç, Ö. C. (2020). Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 494-501. https://doi.org/10.19113/sdufenbed.499244
AMA Kıvanç ÖC. Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı. SDÜ Fen Bil Enst Der. Ağustos 2020;24(2):494-501. doi:10.19113/sdufenbed.499244
Chicago Kıvanç, Ömer Cihan. “Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 2 (Ağustos 2020): 494-501. https://doi.org/10.19113/sdufenbed.499244.
EndNote Kıvanç ÖC (01 Ağustos 2020) Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 2 494–501.
IEEE Ö. C. Kıvanç, “Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı”, SDÜ Fen Bil Enst Der, c. 24, sy. 2, ss. 494–501, 2020, doi: 10.19113/sdufenbed.499244.
ISNAD Kıvanç, Ömer Cihan. “Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/2 (Ağustos 2020), 494-501. https://doi.org/10.19113/sdufenbed.499244.
JAMA Kıvanç ÖC. Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı. SDÜ Fen Bil Enst Der. 2020;24:494–501.
MLA Kıvanç, Ömer Cihan. “Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 2, 2020, ss. 494-01, doi:10.19113/sdufenbed.499244.
Vancouver Kıvanç ÖC. Bir İnsansız Kara Aracı İçin Yüksek Verimli Fırçasız Doğru Akım Motoru Tasarımı. SDÜ Fen Bil Enst Der. 2020;24(2):494-501.

e-ISSN: 1308-6529