2-Etoksi-6-[(E)-[(2-Hidroksifenil)imino]metil]fenol Türevi Schiff Bazlarının Sentezi ve Teorik Çalışmalar
Yıl 2020,
Cilt: 24 Sayı: 2, 419 - 431, 26.08.2020
Halil Berber
,
Ayşe Aydoğdu Erdönmez
,
Ülkü Dilek Uysal
Öz
2-Etoksi-6-[(E)-[(2-hidroksifenil)imino]metil]fenol türevi Schiff bazları (4-kloro-2-((3-etoksi-2-hidroksibenziliden)amino)fenol; 5S1 ve 2-((3-etoksi-2-hidroksibenziliden)amino)-4-metilfenol); 5S2 bileşikleri sentezlenmiştir. Karekterizasyonu 1H ve 13C NMR, elemental analiz ve FT-IR Spektrometresi ile yapılmıştır. Bileşiklerin ve olası tautomer formlarının kararlı konformasyonları teorik hesaplamalarla belirlenmiştir. Tüm hesaplamalar; kararlı konformasyonlar kullanılarak ve vakumda B3LYP/6-311g(2d,p) yöntemiyle yapılmıştır. Hesaplamalarda bileşiklerin enerjileri, kararlı taotomer formları, H-bağları, Mulliken yükleri, dipol momentleri, Çözücüyle erişilebilen yüzey alanı (Solvent accessibility surface), Moleküler elektrostatik potansiyel değerleri (MEP) (Molecular electrostatic potentials values), HOMO, LUMO ve enerji bant aralığı enerjileri (HOMO, LUMO and band gap energies) hesaplamaları yapılmıştır. Deneysel ve teorik IR, 1H ve 13C NMR uyumu incelenmiştir.
Destekleyen Kurum
Anadolu Üniversitesi
Proje Numarası
1509F633, 1102F027, 1304F064
Teşekkür
Bu çalışmanın yazarları, 1509F633 and 1102F027 numaralı proje çalışmaları kapsamındaki desteklerinden dolayı Anadolu Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığına teşekkür ederler. Yazarlar bu çalışmada kullanılan Gauss View 5.0 programı (Proje No: 1304F064) nedeniyle de Anadolu Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığına teşekkür ederler.
Kaynakça
- [1] Schiff, H., 1864. The syntheses and characterization of Schiff base, Liebigs Annalen der Chemie. 3, 343–349.
- [2] Berhanu, A. L., Mohiuddin, G. I., Malik, A. K., Aulakh, J. S., Kumar, V., Kim, K.-H., 2019. A review of the applications of Schiff bases as optical chemical sensors, Trac-Trends in Analytical Chemistry, 116, 74-91.
- [3] Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y., Zhao, X., 2017. A diethylamino pyridine formyl Schiff base as selective recognition chemosensor for biological thiols, Sensors and Actuators B-Chemical, 250, 132–138.
- [4] Kajal, A., Bala, S., Kamboj, S., Sharma, N., Saini, V., 2013. Review Article: Schiff bases: A versatile pharmacophore, Journal of Catalysis, 893512, 1-14.
- [5] Sidir, I., Sidir, Y. G., Berber, H., Demiray, F., 2019. Electronic structure and optical properties of Schiff base hydrazone derivatives by solution technique for optoelectronic devices: Synthesis, experiment and quantum chemical investigation, Journal of Molecular Structure, 1176, 31-46.
- [6] Sidir, Y. G., Aslan, C., Berber, H., Sidir, I., 2019. The electronic structure, solvatochromism, and electric dipole moments of new Schiff base derivatives using absorbance and fluorescence spectra, Structural Chemistry, 30(3), 835-851.
- [7] Sidir, Y. G., Pirbudak, G., Berber, H., Sidir, I., 2017. Study on Electronic and Photophysical Properties Of Substitute-((2-Phenoxybenzylidene)Amino)Phenol Derivatives: Synthesis, Solvatochromism, Electric Dipole Moments And DFT Calculations, Journal of Molecular Liquids, 242, 1096-1110.
- [8] Liua, Y., Maoa, L., Yang, S., Liu, M., Huang, H., Wen, Y., Deng, F., Li, Y., Zhang, X., Wei, Y., 2018. Synthesis and Biological Imaging of Fluorescent Polymeric Nanoparticles with AIE Feature via The Combination of RAFT Polymerization and Post-Polymerization Modification, Dyes and Pigments, 158, 79-87.
- [9] Gowda, A., Roy, A., Kumar, S., 2017. Synthesis and Mesomorphic Properties of Novel Schiff Base Liquid Crystalline EDOT Derivatives, Journal of Molecular Liquids, 225, 840–847.
- [10] Dhar, D. N., Taploo, C. L., 1982. Schiff Bases and Their Applications, Journal of Scientific & Industrial Research, 41, 501-506.
- [11] Alreja, P., Kaur, N., 2018. Probing Anion and Cation with Novel Salicylidene Schiff Base Receptor Appended with 1, 10-Phenanthroline: Mimicking INHIBIT Molecular Logic Gate, Inorganica Chimica Acta, 480, 127-131.
- [12] Liu, X., Hamon, J.-R., 2019. Recent Developments In Penta-, Hexa- And Heptadentate Schiff Base ligands and Their Metal Complexes, Coordination Chemistry Reviews, 389, 94-118.
- [13] de Souza, A. O., Galetti, F. C. S., Silva, C. L., Bicalho, B., Parma, M. M., Fonseca, S. F., Marsaioli, A. J., Trindade, A. C. L. B., Freitas, G. R. P., Bezerra, F. S., Andrade-Neto, M., de Oliveira, M. C. F., 2007. Antimycobacterial and Cytotoxicity Activity of Synthetic and Natural Compounds, Quimica Nova, 30, 1563–1566.
- [14] Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., Li, P., 2007. Antifungal properties of Schiff bases of Chitosan, N-substituted Chitosan and Quaternized Chitosan, Carbohydrate Research. 342, 1329–1332.
- [15] Sztanke, K., Maziarka, A., Osinka, A., Sztanke, M., 2013. An Insight into Synthetic Schiff Bases Revealing Antiproliferative Activities in Vitro, Bioorganic & Medicinal Chemistry, 21, 3648–3666.
- [16] Abdel-Rahman, L. H., Abu-Dief, A. M., Aboelez, M. O., Hassan Abdel-Mawgoud, A. A., 2017. DNA Interaction, Antimicrobial, Anticancer Activities and Molecular Docking Study of Some New VO(II), Cr(III), Mn(II) And Ni(II) Mononuclear Chelates Encompassing Quaridentate Imine Ligand, Journal of Photochemistry and Photobiology B-Biolog, 170, 271–285.
- [17] Utreja, D., Singh, S., Kaur, M., 2015. Schiff Bases and their Metal Complexes as Anti-Cancer Agents: A Review, Current Bioactive Compounds, 11(4), 215–230.
- [18] Carreno, A., Zuniga, C., Paez-Hernandez, D., Gacitua, M., Polanco, R., Otero, C., Arratia-Perez, R., Fuentes, J.A., 2018. Study of The Structure–Bioactivity Relationship of Three New Pyridine Schiff Bases: Synthesis, Spectral Characterization, DFT Calculations and Biological Assays, New Journal of Chemistry, 42, 8851–8863.
- [19] Berber, H., Uysal, U. D., 2015. Bazı Diimin Türevi Schiff Bazlarının Sentezi, Geometrileri Ve Tautomer Yapılarının Kararlılıklarının DFT Yöntemi ile Hesaplanması, Anadolu University Journal of Science and Technology B- Theoretical Sciences, 3(2), 105-107.
- [20] Aydoğdu, A., Uysal, U. D., Berber, H., 2017. Newly Synthesized Schiff Bases: Structure Analysis, Theoretical IR, UV, 1H, 13C-NMR Spectra and Structure-Activity Relationship, Chemical Sciences Journal Open Access, 8(2), 98. ISSN:2150-3494, DOI: 10.4172/2150-3494-C1-009.
- [21] Ercengiz, D., Berber, H., Uysal U. D., 2017. Theoretical IR, UV, 1H And 13C-NMR Spectra Of Certain Schiff Bases Derived Substituted-2-Aminophenol and Hydroxyl Benzaldehyde, Chemical Sciences Journal Open Access, 8(2), 102. ISSN:2150-3494, DOI: 10.4172/2150-3494-C1-009.
- [22] Uysal, U. D., Berber, H., Ercengiz, D., 2018. Theoretical Investigation on Solvent Dependent Shift and Electronic Transition Properties of Certain Schiff Bases, Journal of the Turkish Chemical Society, Section A, 4(1), 111-130.
- [23] Erxleben, A., 2018. Transition Metal Salen Complexes in Bioinorganic and Medicinal Chemistry, Inorganica Chimica Acta, 472, 40–57.
- [24] Holbrook, R.J., Weinberg, D.J., Peterson, M.D., Weiss, E.A., Meade, T.J., 2015. Light-Activated Protein Inhibition through Photoinduced Electron Transfer of a Ruthenium (II)–Cobalt (III) Bimetallic Complex, Journal of the American Chemical Society, 137, 3379–3385.
- [25] Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D., Hamon, J.-R., 2018. Multidentate Unsymmetrically-Substituted Schiff Bases and Their Metal Complexes: Synthesis, Functional Materials Properties, and Applications to Catalysis, Coordination Chemistry Reviews, 357, 144–172.
- [26] CS ChemBioDraw Ultra 16.0.1.4 for Microsoft Windows.
- [27] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V, Mennucci B, Petersson GA, Nakatsuji H, Caricato, M., Li X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr J. A,, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., 2009. (Gaussian, Inc., Wallingford CT 06492 USA.)
- [28] Dennington, R., Keith, T. A., Millam, J. M., 2009. GaussView, Version 5, Semichem Inc., Shawnee Mission, KS.
- [29] Sıdır, İ., 2017. Density Functional Theory Design D-D-A Type Small Molecule with 1.03 EV Narrow Band Gap: Effect of Electron Donor Unit for Organic Photovoltaic Solar Cell, Molecular Physics, 115 (19), 2451-2459.
- [30] Ghomrasni, S., Ayachi, S., Alimi, K., 2015. New Acceptor–Donor–Acceptor (A–D–A) Type Copolymers for Efficient Organic Photovoltaic Devices, Journal of Physics and Chemistry of Solids, 76, 105–111.
- [31] Azazi, A., Mabrouk, A., Chemek, M., Kreher, D., Alimi, K., 2014. DFT Modeling of Conjugated Copolymers Photophysical Properties: Towards
Organic Solar Cell Application, Synthetic Metals, 198, 314–322.
- [32] Ridley, B. K., 1999. Large-Band Gap Semiconductors, Turkish Journal of Physics, TUBITAK, 23, 577-582.
Synthesis and Theoretical Studies of 2-Ethoxy-6-[(E)-[(2-Hydroxyphenyl)imino]methyl]phenol Derivative Schiff Bases
Yıl 2020,
Cilt: 24 Sayı: 2, 419 - 431, 26.08.2020
Halil Berber
,
Ayşe Aydoğdu Erdönmez
,
Ülkü Dilek Uysal
Öz
2-Ethoxy-6-[(E)-[(2-hydroxyphenyl)imino]methyl]phenol derivative Schiff bases (4-chloro-2-((3-ethoxy-2-hydroxybenzylidene)amino)phenol; 5S1 and 2-((3-ethoxy-2-hydroxybenzylidene)amino)-4-methylphenol; 5S2 have been synthesized and characterized with 1H-NMR, 13C-NMR, IR and elemental analysis in this study. The stable conformers and possible tautomer forms of Schiff base derivatives have been determined in theoretical calculations. All the calculations considering for the energetically stable conformers were performed with Gaussian09 program by using B3LYP/6-311g(2d,p) level of theory. The Gibbs Free energies, stable tautomer forms, H-bond, Mulliken charges, dipole moments, solvent accessibility surface areas (SAS), molecular electrostatic potential values, HOMO, LUMO and band gap energies (EGAP) were also calculated. The consistency between the theoretical and experimental 1H-NMR, 13C-NMR and IR spectra has also been investigated.
Proje Numarası
1509F633, 1102F027, 1304F064
Kaynakça
- [1] Schiff, H., 1864. The syntheses and characterization of Schiff base, Liebigs Annalen der Chemie. 3, 343–349.
- [2] Berhanu, A. L., Mohiuddin, G. I., Malik, A. K., Aulakh, J. S., Kumar, V., Kim, K.-H., 2019. A review of the applications of Schiff bases as optical chemical sensors, Trac-Trends in Analytical Chemistry, 116, 74-91.
- [3] Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y., Zhao, X., 2017. A diethylamino pyridine formyl Schiff base as selective recognition chemosensor for biological thiols, Sensors and Actuators B-Chemical, 250, 132–138.
- [4] Kajal, A., Bala, S., Kamboj, S., Sharma, N., Saini, V., 2013. Review Article: Schiff bases: A versatile pharmacophore, Journal of Catalysis, 893512, 1-14.
- [5] Sidir, I., Sidir, Y. G., Berber, H., Demiray, F., 2019. Electronic structure and optical properties of Schiff base hydrazone derivatives by solution technique for optoelectronic devices: Synthesis, experiment and quantum chemical investigation, Journal of Molecular Structure, 1176, 31-46.
- [6] Sidir, Y. G., Aslan, C., Berber, H., Sidir, I., 2019. The electronic structure, solvatochromism, and electric dipole moments of new Schiff base derivatives using absorbance and fluorescence spectra, Structural Chemistry, 30(3), 835-851.
- [7] Sidir, Y. G., Pirbudak, G., Berber, H., Sidir, I., 2017. Study on Electronic and Photophysical Properties Of Substitute-((2-Phenoxybenzylidene)Amino)Phenol Derivatives: Synthesis, Solvatochromism, Electric Dipole Moments And DFT Calculations, Journal of Molecular Liquids, 242, 1096-1110.
- [8] Liua, Y., Maoa, L., Yang, S., Liu, M., Huang, H., Wen, Y., Deng, F., Li, Y., Zhang, X., Wei, Y., 2018. Synthesis and Biological Imaging of Fluorescent Polymeric Nanoparticles with AIE Feature via The Combination of RAFT Polymerization and Post-Polymerization Modification, Dyes and Pigments, 158, 79-87.
- [9] Gowda, A., Roy, A., Kumar, S., 2017. Synthesis and Mesomorphic Properties of Novel Schiff Base Liquid Crystalline EDOT Derivatives, Journal of Molecular Liquids, 225, 840–847.
- [10] Dhar, D. N., Taploo, C. L., 1982. Schiff Bases and Their Applications, Journal of Scientific & Industrial Research, 41, 501-506.
- [11] Alreja, P., Kaur, N., 2018. Probing Anion and Cation with Novel Salicylidene Schiff Base Receptor Appended with 1, 10-Phenanthroline: Mimicking INHIBIT Molecular Logic Gate, Inorganica Chimica Acta, 480, 127-131.
- [12] Liu, X., Hamon, J.-R., 2019. Recent Developments In Penta-, Hexa- And Heptadentate Schiff Base ligands and Their Metal Complexes, Coordination Chemistry Reviews, 389, 94-118.
- [13] de Souza, A. O., Galetti, F. C. S., Silva, C. L., Bicalho, B., Parma, M. M., Fonseca, S. F., Marsaioli, A. J., Trindade, A. C. L. B., Freitas, G. R. P., Bezerra, F. S., Andrade-Neto, M., de Oliveira, M. C. F., 2007. Antimycobacterial and Cytotoxicity Activity of Synthetic and Natural Compounds, Quimica Nova, 30, 1563–1566.
- [14] Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., Li, P., 2007. Antifungal properties of Schiff bases of Chitosan, N-substituted Chitosan and Quaternized Chitosan, Carbohydrate Research. 342, 1329–1332.
- [15] Sztanke, K., Maziarka, A., Osinka, A., Sztanke, M., 2013. An Insight into Synthetic Schiff Bases Revealing Antiproliferative Activities in Vitro, Bioorganic & Medicinal Chemistry, 21, 3648–3666.
- [16] Abdel-Rahman, L. H., Abu-Dief, A. M., Aboelez, M. O., Hassan Abdel-Mawgoud, A. A., 2017. DNA Interaction, Antimicrobial, Anticancer Activities and Molecular Docking Study of Some New VO(II), Cr(III), Mn(II) And Ni(II) Mononuclear Chelates Encompassing Quaridentate Imine Ligand, Journal of Photochemistry and Photobiology B-Biolog, 170, 271–285.
- [17] Utreja, D., Singh, S., Kaur, M., 2015. Schiff Bases and their Metal Complexes as Anti-Cancer Agents: A Review, Current Bioactive Compounds, 11(4), 215–230.
- [18] Carreno, A., Zuniga, C., Paez-Hernandez, D., Gacitua, M., Polanco, R., Otero, C., Arratia-Perez, R., Fuentes, J.A., 2018. Study of The Structure–Bioactivity Relationship of Three New Pyridine Schiff Bases: Synthesis, Spectral Characterization, DFT Calculations and Biological Assays, New Journal of Chemistry, 42, 8851–8863.
- [19] Berber, H., Uysal, U. D., 2015. Bazı Diimin Türevi Schiff Bazlarının Sentezi, Geometrileri Ve Tautomer Yapılarının Kararlılıklarının DFT Yöntemi ile Hesaplanması, Anadolu University Journal of Science and Technology B- Theoretical Sciences, 3(2), 105-107.
- [20] Aydoğdu, A., Uysal, U. D., Berber, H., 2017. Newly Synthesized Schiff Bases: Structure Analysis, Theoretical IR, UV, 1H, 13C-NMR Spectra and Structure-Activity Relationship, Chemical Sciences Journal Open Access, 8(2), 98. ISSN:2150-3494, DOI: 10.4172/2150-3494-C1-009.
- [21] Ercengiz, D., Berber, H., Uysal U. D., 2017. Theoretical IR, UV, 1H And 13C-NMR Spectra Of Certain Schiff Bases Derived Substituted-2-Aminophenol and Hydroxyl Benzaldehyde, Chemical Sciences Journal Open Access, 8(2), 102. ISSN:2150-3494, DOI: 10.4172/2150-3494-C1-009.
- [22] Uysal, U. D., Berber, H., Ercengiz, D., 2018. Theoretical Investigation on Solvent Dependent Shift and Electronic Transition Properties of Certain Schiff Bases, Journal of the Turkish Chemical Society, Section A, 4(1), 111-130.
- [23] Erxleben, A., 2018. Transition Metal Salen Complexes in Bioinorganic and Medicinal Chemistry, Inorganica Chimica Acta, 472, 40–57.
- [24] Holbrook, R.J., Weinberg, D.J., Peterson, M.D., Weiss, E.A., Meade, T.J., 2015. Light-Activated Protein Inhibition through Photoinduced Electron Transfer of a Ruthenium (II)–Cobalt (III) Bimetallic Complex, Journal of the American Chemical Society, 137, 3379–3385.
- [25] Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D., Hamon, J.-R., 2018. Multidentate Unsymmetrically-Substituted Schiff Bases and Their Metal Complexes: Synthesis, Functional Materials Properties, and Applications to Catalysis, Coordination Chemistry Reviews, 357, 144–172.
- [26] CS ChemBioDraw Ultra 16.0.1.4 for Microsoft Windows.
- [27] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V, Mennucci B, Petersson GA, Nakatsuji H, Caricato, M., Li X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr J. A,, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., 2009. (Gaussian, Inc., Wallingford CT 06492 USA.)
- [28] Dennington, R., Keith, T. A., Millam, J. M., 2009. GaussView, Version 5, Semichem Inc., Shawnee Mission, KS.
- [29] Sıdır, İ., 2017. Density Functional Theory Design D-D-A Type Small Molecule with 1.03 EV Narrow Band Gap: Effect of Electron Donor Unit for Organic Photovoltaic Solar Cell, Molecular Physics, 115 (19), 2451-2459.
- [30] Ghomrasni, S., Ayachi, S., Alimi, K., 2015. New Acceptor–Donor–Acceptor (A–D–A) Type Copolymers for Efficient Organic Photovoltaic Devices, Journal of Physics and Chemistry of Solids, 76, 105–111.
- [31] Azazi, A., Mabrouk, A., Chemek, M., Kreher, D., Alimi, K., 2014. DFT Modeling of Conjugated Copolymers Photophysical Properties: Towards
Organic Solar Cell Application, Synthetic Metals, 198, 314–322.
- [32] Ridley, B. K., 1999. Large-Band Gap Semiconductors, Turkish Journal of Physics, TUBITAK, 23, 577-582.