Araştırma Makalesi
BibTex RIS Kaynak Göster

Exact Solutions of Conformable Differential Equations Using Generalized Kudryashov Method

Yıl 2021, Cilt: 25 Sayı: 1, 142 - 148, 20.04.2021
https://doi.org/10.19113/sdufenbed.848954

Öz

Nonlinear conformable differential equations have an important place in mathematical physics. Recently, the search for exact solutions of these equtions has been an appealing field for most scientists. In this work, exact solutions of the conformable third-order modified KdV equation and conformable Boussinesq equation founded by using the generalized Kudryashov method. This method is an effective method to acquire exact solutions of nonlinear conformable equations. All calculations in this study have been made and checked back with the aid of the Maple packet program. Also, the graphical representation of the obtained solutions is given. The obtained solutions in this manuscript have the potential to be useful in mathematical physics and engineering.

Kaynakça

  • [1] Ablowitz, M. J., Segur, H. 1981. Solitons and Inverse Scattering Transformation, SIAM, Philadelphia, 438 s.
  • [2] Wang, M. L. 1995. Solitary Wave Solutions for Variant Boussinesq Equations. Physics Letters A, 199, 169- 172.
  • [3] Wazwaz, A. M. 2007. Multiple-Soliton Solutions for the Boussinesq Equation. Applied Mathematics and Computation, 192(2), 479-486.
  • [4] Gümüş, H., Yılmaz, H. 2019. Nonlineer Schrödinger Denkleminin Tam Çözümleri. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 2(1), 11-19.
  • [5] Gurefe, Y., Mısırlı, E. 2011. Exp-function Method for Solving Nonlinear Evolution Equations with Higher Order Nonlinearity. Computers& Mathematics with Applications, 61 (8), 2025-2030.
  • [6] Gurefe, Y., Mısırlı, Pandir, Y., Sönmezoğlu, A., Ekici, M. 2015. New Exact Solutions of the Davey-Stewartson Equation with Power-Law Nonlinearity. The Bulletin of the Malaysian Mathemetical Society Series, 38(3), 1223-1234.
  • [7] Bulut, H., Pandir, Y., Tuluce Demiray, S. 2014. Exact Solutions of Nonlinear Schrodinger’s Equation with Dual PowerLaw Nonlinearity by Extended Trial Equation Method. Waves Random Complex Media, 24(4), 439-451.
  • [8] Tasbozan, O., Kurt, A. 2020. The New Travelling Wave Solutions of Time Fractional Fitzhugh-Naguma Equation with Sine-Gordon Expansion Method. Adıyaman Üniversitesi Fen Bilimleri Dergisi, 10(1), 256-263.
  • [9] Başkonuş, H. M., Bulut, H., Tukur, A. S. 2017. Investigation of Various Travelling Wave Solutions to the Extended (2+1)-dimensional Quantum ZK Equation. The European Physical Journal Plus, 132, 482-490.
  • [10] Demiray, S. T. 2019. New Exact Solutions of (3+1)-Dimensional Modified Quantum Zakharov-Kuznetsov Equation. Turkish Journal of Mathematics and Computer Science, 11, 56-59.
  • [11] Khalil, R., Horani, M. Al., Yousef, A., Sababbeh, M. 2014. A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70.
  • [12] Kudryashov, N. A. 2013. Polynomials in Logistic Function and Solitary Waves of Nonlinear Differential Equations. Applied Mathematics and Computation, 219(17), 9245-9253.
  • [13] Kaplan, M., Bekir, A., Akbulut, A. 2016. A generalized Kudryashov to Some Nonlinear Evolution Equations in Mathematical Physics. Nonlinear Dynamics, 85(4), 2843-2850. [14] Sahoo, S., Ray, S. 2016. Solitary Wave Solutions for Time Fractional Third Order Modified KdV Equation Using Two Reliable Techniques (G’/G)-Expansion Method and improved (G’/G)- Expansion Method. Physica A: Statistical Mechanics and Its Applications, 448, 265-282.
  • [15] Wazwaz, A. M. 2001. Construction of Soliton Solutions and Periodic Solutions of the Boussinesq Equation by the Modified Decomposition Method. Chaos, Soliton and Fractals, 12, 1549-1556.
  • [16] Hosseini, K., Ansari, R. 2017. New Exact Solutions of Nonlinear Conformable Time-Fractional Boussinesq Equations Using the Modified Kudryashov Method. Waves in Random and Complex Media, 27(4), 628-636.
  • [17] Akbulut, A., Kaplan, M., 2018. Auxiliary equation method for time-fractional differential equations with conformable derivative, Computers & Mathematics with Applications, 75(3), 876-882.
  • [18] Sabi'u, J., Jibril, A., Gadu, A. M. 2019. New exact solution for the (3+1) conformable space-time fractional modified Korteweg-de-Vries equations via Sine-Cosine Method, Journal of Taibah University Science, 13(1), 91-95.
  • [19] Hosseini K., Bekir A., Ansari R. 2017. Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp(-ϕ(ε))-expansion Method, Opt Quant Electron 49, 131.

Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri

Yıl 2021, Cilt: 25 Sayı: 1, 142 - 148, 20.04.2021
https://doi.org/10.19113/sdufenbed.848954

Öz

Lineer olmayan conformable diferensiyel denklemler matematiksel fizikte önemli bir yere sahiptir. Bu denklemlerin tam çözümlerinin elde edilmesi, son yıllarda oldukça ilgi çeken bir çalışma alanı olarak karşımıza çıkmaktadır. Bu makalede, conformable üçüncü mertebeden modifiye KdV denklemi ve conformable Boussinesq denkleminin tam çözümleri genelleştirilmiş Kudryashov yöntemi kullanılarak bulunmuştur. Bu yöntem, lineer olmayan conformable denklemlerin tam çözümlerini elde etmede kullanılan etkili bir yöntemdir. Bu çalışmadaki bütün hesaplamalar Maple paket programı kullanılarak yapılmış ve elde edilen çözümler denklemlerde yerine konularak doğruluğu teyit edilmiştir. Ayrıca elde edilen çözümlerin grafiklerine de yer verilmiştir. Elde edilen çözümler, matematiksel fizik ve mühendislik alanlarında önemli kullanım alanlarına sahip olma potansiyeline sahiptirler.

Kaynakça

  • [1] Ablowitz, M. J., Segur, H. 1981. Solitons and Inverse Scattering Transformation, SIAM, Philadelphia, 438 s.
  • [2] Wang, M. L. 1995. Solitary Wave Solutions for Variant Boussinesq Equations. Physics Letters A, 199, 169- 172.
  • [3] Wazwaz, A. M. 2007. Multiple-Soliton Solutions for the Boussinesq Equation. Applied Mathematics and Computation, 192(2), 479-486.
  • [4] Gümüş, H., Yılmaz, H. 2019. Nonlineer Schrödinger Denkleminin Tam Çözümleri. Türkiye Teknoloji ve Uygulamalı Bilimler Dergisi, 2(1), 11-19.
  • [5] Gurefe, Y., Mısırlı, E. 2011. Exp-function Method for Solving Nonlinear Evolution Equations with Higher Order Nonlinearity. Computers& Mathematics with Applications, 61 (8), 2025-2030.
  • [6] Gurefe, Y., Mısırlı, Pandir, Y., Sönmezoğlu, A., Ekici, M. 2015. New Exact Solutions of the Davey-Stewartson Equation with Power-Law Nonlinearity. The Bulletin of the Malaysian Mathemetical Society Series, 38(3), 1223-1234.
  • [7] Bulut, H., Pandir, Y., Tuluce Demiray, S. 2014. Exact Solutions of Nonlinear Schrodinger’s Equation with Dual PowerLaw Nonlinearity by Extended Trial Equation Method. Waves Random Complex Media, 24(4), 439-451.
  • [8] Tasbozan, O., Kurt, A. 2020. The New Travelling Wave Solutions of Time Fractional Fitzhugh-Naguma Equation with Sine-Gordon Expansion Method. Adıyaman Üniversitesi Fen Bilimleri Dergisi, 10(1), 256-263.
  • [9] Başkonuş, H. M., Bulut, H., Tukur, A. S. 2017. Investigation of Various Travelling Wave Solutions to the Extended (2+1)-dimensional Quantum ZK Equation. The European Physical Journal Plus, 132, 482-490.
  • [10] Demiray, S. T. 2019. New Exact Solutions of (3+1)-Dimensional Modified Quantum Zakharov-Kuznetsov Equation. Turkish Journal of Mathematics and Computer Science, 11, 56-59.
  • [11] Khalil, R., Horani, M. Al., Yousef, A., Sababbeh, M. 2014. A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70.
  • [12] Kudryashov, N. A. 2013. Polynomials in Logistic Function and Solitary Waves of Nonlinear Differential Equations. Applied Mathematics and Computation, 219(17), 9245-9253.
  • [13] Kaplan, M., Bekir, A., Akbulut, A. 2016. A generalized Kudryashov to Some Nonlinear Evolution Equations in Mathematical Physics. Nonlinear Dynamics, 85(4), 2843-2850. [14] Sahoo, S., Ray, S. 2016. Solitary Wave Solutions for Time Fractional Third Order Modified KdV Equation Using Two Reliable Techniques (G’/G)-Expansion Method and improved (G’/G)- Expansion Method. Physica A: Statistical Mechanics and Its Applications, 448, 265-282.
  • [15] Wazwaz, A. M. 2001. Construction of Soliton Solutions and Periodic Solutions of the Boussinesq Equation by the Modified Decomposition Method. Chaos, Soliton and Fractals, 12, 1549-1556.
  • [16] Hosseini, K., Ansari, R. 2017. New Exact Solutions of Nonlinear Conformable Time-Fractional Boussinesq Equations Using the Modified Kudryashov Method. Waves in Random and Complex Media, 27(4), 628-636.
  • [17] Akbulut, A., Kaplan, M., 2018. Auxiliary equation method for time-fractional differential equations with conformable derivative, Computers & Mathematics with Applications, 75(3), 876-882.
  • [18] Sabi'u, J., Jibril, A., Gadu, A. M. 2019. New exact solution for the (3+1) conformable space-time fractional modified Korteweg-de-Vries equations via Sine-Cosine Method, Journal of Taibah University Science, 13(1), 91-95.
  • [19] Hosseini K., Bekir A., Ansari R. 2017. Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp(-ϕ(ε))-expansion Method, Opt Quant Electron 49, 131.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Arzu Akbulut 0000-0003-2448-2481

Melike Kaplan 0000-0001-5700-9127

Yayımlanma Tarihi 20 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 1

Kaynak Göster

APA Akbulut, A., & Kaplan, M. (2021). Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 142-148. https://doi.org/10.19113/sdufenbed.848954
AMA Akbulut A, Kaplan M. Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2021;25(1):142-148. doi:10.19113/sdufenbed.848954
Chicago Akbulut, Arzu, ve Melike Kaplan. “Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 1 (Nisan 2021): 142-48. https://doi.org/10.19113/sdufenbed.848954.
EndNote Akbulut A, Kaplan M (01 Nisan 2021) Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 1 142–148.
IEEE A. Akbulut ve M. Kaplan, “Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 25, sy. 1, ss. 142–148, 2021, doi: 10.19113/sdufenbed.848954.
ISNAD Akbulut, Arzu - Kaplan, Melike. “Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (Nisan 2021), 142-148. https://doi.org/10.19113/sdufenbed.848954.
JAMA Akbulut A, Kaplan M. Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25:142–148.
MLA Akbulut, Arzu ve Melike Kaplan. “Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 1, 2021, ss. 142-8, doi:10.19113/sdufenbed.848954.
Vancouver Akbulut A, Kaplan M. Conformable Diferensiyel Denklemlerin Genelleştirilmiş Kudryashov Yöntemiyle Tam Çözümleri. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25(1):142-8.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.