Araştırma Makalesi
BibTex RIS Kaynak Göster

NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları ile Korozyon Davranışlarının İncelenmesi

Yıl 2021, Cilt: 25 Sayı: 3, 610 - 617, 30.12.2021
https://doi.org/10.19113/sdufenbed.888782

Öz

Malzemelerin yüzey özelliklerinin geliştirilmesi ve çevresel şartlara daha iyi uyum sağlayabilmesi amacıyla geçmişten günümüze birçok alanda tercih edilen Termal bariyer kaplamalar (TBCs) uzay ve havacılık sanayisinde yaygın olarak kullanılmaktadır. TBC’ler çalışma koşulları esnasında erozyon, sıcak korozyon, oksidasyon ve CaO-MgO-Al2O3-SiO2 (CMAS) gibi hasar mekanizmalarına maruz kalmaktadır. Tüm bu hasar mekanizmalarından dolayı TBC sistemlerinde dökülmeler ve bozulmalar meydana gelmektedir. Bu çalışmada, Inconel 718 süper alaşım altlık malzeme üzerine NiCr içeriğine sahip metal tozları bağ kaplama olarak, YSZ (ZrO2–8wt.%Y2O3) içeriğine sahip seramik tozlar ise, üst kaplama olarak altlık üzerine kaplanmıştır. Atmosferik Plazma Sprey (APS) yöntemi kullanılarak üretilen TBC sistemleri üretimlerinin ardından, mekanik alaşımla yöntemiyle üretilen CMAS camsı yapısı eşliğinde korozyon testlerine tabi tutulmuşlardır. Gerçekleştirilen CMAS testleri öncesi ve sonrasında TBC sistemlerinin mikroyapısal ve mekaniksel özellikleri ileri karakterizasyon teknikleri kullanılarak incelenmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B011803507

Teşekkür

Bu araştırma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu tarafından (TÜBİTAK) 1919B011803507 başvuru numaralı, 2209-A proje kodu ile mali olarak desteklenmiştir.

Kaynakça

  • [1] Wu, J., bo Guo, H., zhi Gao, Y., kai Gong, S. 2011. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. Journal of the European Ceramic Society, 31, 1881–1888.
  • [2] Gok, M. G., Goller, G. 2017. Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS+hot corrosion test. Journal of the European Ceramic Society, 37, 2501–2508.
  • [3] Peng, H., Wang, L., Guo, L., Miao, W., Guo, H. Gong, S. 2012. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress in Natural Science: Materials International, 22, 461–467.
  • [4] Karaoglanli, A. C., Altuncu, E., Ozdemir, I., Turk, A. Ustel, F. 2011. Structure and durability evaluation of YSZ+Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions. Surface and Coatings Technology, 205, 369–S373.
  • [5] Daroonparvar, M. Yajid, M. A. M., Yusof, N. M., Bakhsheshi-Rad, H. R., Hamzah, E., Nazoktabar, M. 2014. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones. Journal of Rare Earths, 32, 989–1002.
  • [6] Yugeswaran, S., Kobayashi, A., Ananthapadmanabhan, P. V. 2012. Initial phase hot corrosion mechanism of gas tunnel type plasma sprayed thermal barrier coatings. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177, 536–542.
  • [7] Li, S., Liu, Z. G., Ouyang, J. H. 2013. Growth of YbVO4 crystals evolved from hot corrosion reactions of Yb2Zr2O7 against V2O5 and Na2SO4 + V2O5. Applied Surface Science, 276, 653–659.
  • [8] Karaoğlanlı, A. C. 2012. Termal bariyer kaplamalarda bağ tabakasının farklı yöntemlerle üretilmesi ve özelliklere etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • [9] Mobarra, R., Jafari, A. H., Karaminezhaad, M. 2006. Hot corrosion behavior of MCrAlY coatings on IN738LC. Surface and Coatings Technology. 201, 2202–2207.
  • [10] Young, D. 2015. High Temperature Oxidation and Corrosion of Metals.
  • [11] Mifune, N., Harada, Y., Doi, T., Yamasaki, R. 2004. Hot-corrosion behavior of graded thermal barrier coatings formed by plasma-spraying process. Journal of Thermal Spray Technology, 13, 561–569.
  • [12] Ozgurluk, Y., Doleker, K. M., Ahlatci, H., Ozkan, D. Karaoglanli, A. C. 2018. The microstructural investigation of vermiculite-infiltrated electron beam physical vapor deposition thermal barrier coatings. Open Chemistry, 16, 1106–1110.
  • [13] Huang, X. 2008. Functions of Thermal Barrier Coatings.
  • [14] Padmavathi, C., Upadhyaya, A., Agrawal, D. 2007. Corrosion behavior of microwave-sintered austenitic stainless steel composites. Scripta Materialia, 57, 651–654.
  • [15] Zhou, X., Zou, B., He, L., Xu, Z., Xu, J., Mu, R., Cao, X. 2015. Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures. Corrosion Science, 100, 566–578.
  • [16] Levi, C. G., Hutchinson, J. W., Vidal-Sétif, M. H., Johnson, C. A. 2012. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bulletin, 37, 932–941.
  • [17] Wang, X., Guo, L., Peng, H., Zheng, L., Guo, H. Gong, S. 2015. Hot-corrosion behavior of a La2Ce2O7/YSZ thermal barrier coating exposed to Na2SO4+V2O5 or V2O5 salt at 900 °C. Ceramics International, 41, 6604–6609.
  • [18] Xie, D., Xiong, X., Wang, F. 2003. Effect of an Enamel Coating on the Oxidation and Hot Corrosion Behavior of an HVOF-Sprayed Co–Ni–Cr–Al–Y Coating. Oxidation of Metals, 59, 503–516.
  • [19] Jiang, S. M., Li, H. Q., Ma, J., Xu, C. Z., Gong, J., Sun, C. 2010. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating II: Oxidation and hot corrosion. Corrosion Science, 52, 2316–2322.
  • [20] Pulci, G., Tirillò, J., Marra, F., Sarasini, F. Bellucci, A., Valente, T., Bartuli, C. 2015. High temperature oxidation of MCrAlY coatings modified by Al2O3 PVD overlay. Surface and Coatings Technology, 268, 198–204.
  • [21] Ahlborg, N. L., Zhu, D. 2013. Calcium-magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surface and Coatings Technology, 237, 79–87.
  • [22] Gavendová, P., Čížek, J., Čupera, J., Hasegawa, M., Dlouhý, I. 2016. Microstructure Modification of CGDS and HVOF Sprayed CoNiCrAlY Bond Coat Remelted by Electron Beam. Procedia Materials Science, 12, 89–94.
  • [23] Bonadei, A., Marrocco, T. 2014. Cold sprayed MCrAlY+X coating for gas turbine blades and vanes. Surface and Coatings Technology, 242, 200–206.
  • [24] Saruhan, B., Schulz, U., Bartsch, M. 2007. Developments in processing of ceramic top coats of EB-PVD thermal barrier coatings. Key Engineering Materials, 137–146.
  • [25] Smialek, J. L. 1991. The Chemistry of Saudi Arabian Sand: A Deposition Problem on Helicopter Turbine Airfoils.
  • [26] Krämer, S., Yang, J., Levi, C.G. 2008. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. Journal of the American Ceramic Society, 91, 576–583.
  • [27] Krämer, S., Faulhaber, S., Chambers, M., Clarke, D. R., Levi, C. G., Hutchinson, J. W., Evans, A. G. 2008. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering A, 490, 26–35.
  • [28] Li, L., Hitchman, N., Knapp, J. 2010. Failure of thermal barrier coatings subjected to CMAS attack. Journal of Thermal Spray Technology, Springer, 148–155.
  • [29] Guo, L., Yan, Z., Yu, Y. Yang, J., Li, M. 2019. CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250°C–1350°C. Corrosion Science, 154, 111–122.
  • [30] Stott, F. H., De Wet, D. J., Taylor, R. 1994. Degradation of Thermal-Barrier Coatings at Very High Temperatures. MRS Bulletin, 19, 46–49.
  • [31] Ozgurluk, Y., Karaoglanli, A. C., Ahlatci, H. (2021). Comparison of calcium–magnesium-alumina-silicate (CMAS) resistance behavior of produced with electron beam physical vapor deposition (EB-PVD) method YSZ and Gd2Zr2O7/YSZ thermal barrier coatings systems. Vacuum, 110576.
  • [32]Ozgurluk, Y., Doleker, K. M., Ahlatci, H., Karaoglanli, A. C. (2021). Investigation of calcium–magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method. Surface and Coatings Technology, 411, 126969.
  • [33] Schulz, U., Braue, W. 2013. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits. Surface and Coatings Technology, 235, 165–173.
  • [34] Mercer, C. Faulhaber S., Evans, A. G. Darolia, R. A. 2005. delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration. Acta Materialia, 53, 1029–1039.

Investigation of Corrosion Behavior of Thermal Barrier Coating (TBC) System with NiCr Bond Coating with CaO-MgO-Al2O3-SiO2 (CMAS) Powders Produced Using the Mechanical Alloying Method

Yıl 2021, Cilt: 25 Sayı: 3, 610 - 617, 30.12.2021
https://doi.org/10.19113/sdufenbed.888782

Öz

Thermal barrier coatings (TBCs), which are preferred in many areas from past to present, are widely used in the space and aviation industry in order to improve the surface properties of materials and to better adapt to environmental conditions. TBCs are exposed to erosion, hot corrosion, oxidation and damage mechanisms such as CaO-MgO-Al2O3-SiO2 (CMAS) during working conditions. Due to all these damage mechanisms, spills and deteriorations occur in TBC systems. In this study, metal powders with NiCr content were coated on the Inconel 718 superalloy substrate as a bond coating, and ceramic powders with YSZ (ZrO2–8wt.% Y2O3) were coated on the substrate as a top coating. TBC systems produced using the Atmospheric Plasma Spray (APS) method were subjected to corrosion tests after their production, accompanied by the glassy structure of CMAS produced by the mechanical alloy method. Before and after the CMAS tests, the microstructural and mechanical properties of TBC systems were examined using advanced characterization techniques.

Proje Numarası

1919B011803507

Kaynakça

  • [1] Wu, J., bo Guo, H., zhi Gao, Y., kai Gong, S. 2011. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. Journal of the European Ceramic Society, 31, 1881–1888.
  • [2] Gok, M. G., Goller, G. 2017. Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS+hot corrosion test. Journal of the European Ceramic Society, 37, 2501–2508.
  • [3] Peng, H., Wang, L., Guo, L., Miao, W., Guo, H. Gong, S. 2012. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress in Natural Science: Materials International, 22, 461–467.
  • [4] Karaoglanli, A. C., Altuncu, E., Ozdemir, I., Turk, A. Ustel, F. 2011. Structure and durability evaluation of YSZ+Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions. Surface and Coatings Technology, 205, 369–S373.
  • [5] Daroonparvar, M. Yajid, M. A. M., Yusof, N. M., Bakhsheshi-Rad, H. R., Hamzah, E., Nazoktabar, M. 2014. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones. Journal of Rare Earths, 32, 989–1002.
  • [6] Yugeswaran, S., Kobayashi, A., Ananthapadmanabhan, P. V. 2012. Initial phase hot corrosion mechanism of gas tunnel type plasma sprayed thermal barrier coatings. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177, 536–542.
  • [7] Li, S., Liu, Z. G., Ouyang, J. H. 2013. Growth of YbVO4 crystals evolved from hot corrosion reactions of Yb2Zr2O7 against V2O5 and Na2SO4 + V2O5. Applied Surface Science, 276, 653–659.
  • [8] Karaoğlanlı, A. C. 2012. Termal bariyer kaplamalarda bağ tabakasının farklı yöntemlerle üretilmesi ve özelliklere etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • [9] Mobarra, R., Jafari, A. H., Karaminezhaad, M. 2006. Hot corrosion behavior of MCrAlY coatings on IN738LC. Surface and Coatings Technology. 201, 2202–2207.
  • [10] Young, D. 2015. High Temperature Oxidation and Corrosion of Metals.
  • [11] Mifune, N., Harada, Y., Doi, T., Yamasaki, R. 2004. Hot-corrosion behavior of graded thermal barrier coatings formed by plasma-spraying process. Journal of Thermal Spray Technology, 13, 561–569.
  • [12] Ozgurluk, Y., Doleker, K. M., Ahlatci, H., Ozkan, D. Karaoglanli, A. C. 2018. The microstructural investigation of vermiculite-infiltrated electron beam physical vapor deposition thermal barrier coatings. Open Chemistry, 16, 1106–1110.
  • [13] Huang, X. 2008. Functions of Thermal Barrier Coatings.
  • [14] Padmavathi, C., Upadhyaya, A., Agrawal, D. 2007. Corrosion behavior of microwave-sintered austenitic stainless steel composites. Scripta Materialia, 57, 651–654.
  • [15] Zhou, X., Zou, B., He, L., Xu, Z., Xu, J., Mu, R., Cao, X. 2015. Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures. Corrosion Science, 100, 566–578.
  • [16] Levi, C. G., Hutchinson, J. W., Vidal-Sétif, M. H., Johnson, C. A. 2012. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bulletin, 37, 932–941.
  • [17] Wang, X., Guo, L., Peng, H., Zheng, L., Guo, H. Gong, S. 2015. Hot-corrosion behavior of a La2Ce2O7/YSZ thermal barrier coating exposed to Na2SO4+V2O5 or V2O5 salt at 900 °C. Ceramics International, 41, 6604–6609.
  • [18] Xie, D., Xiong, X., Wang, F. 2003. Effect of an Enamel Coating on the Oxidation and Hot Corrosion Behavior of an HVOF-Sprayed Co–Ni–Cr–Al–Y Coating. Oxidation of Metals, 59, 503–516.
  • [19] Jiang, S. M., Li, H. Q., Ma, J., Xu, C. Z., Gong, J., Sun, C. 2010. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating II: Oxidation and hot corrosion. Corrosion Science, 52, 2316–2322.
  • [20] Pulci, G., Tirillò, J., Marra, F., Sarasini, F. Bellucci, A., Valente, T., Bartuli, C. 2015. High temperature oxidation of MCrAlY coatings modified by Al2O3 PVD overlay. Surface and Coatings Technology, 268, 198–204.
  • [21] Ahlborg, N. L., Zhu, D. 2013. Calcium-magnesium aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surface and Coatings Technology, 237, 79–87.
  • [22] Gavendová, P., Čížek, J., Čupera, J., Hasegawa, M., Dlouhý, I. 2016. Microstructure Modification of CGDS and HVOF Sprayed CoNiCrAlY Bond Coat Remelted by Electron Beam. Procedia Materials Science, 12, 89–94.
  • [23] Bonadei, A., Marrocco, T. 2014. Cold sprayed MCrAlY+X coating for gas turbine blades and vanes. Surface and Coatings Technology, 242, 200–206.
  • [24] Saruhan, B., Schulz, U., Bartsch, M. 2007. Developments in processing of ceramic top coats of EB-PVD thermal barrier coatings. Key Engineering Materials, 137–146.
  • [25] Smialek, J. L. 1991. The Chemistry of Saudi Arabian Sand: A Deposition Problem on Helicopter Turbine Airfoils.
  • [26] Krämer, S., Yang, J., Levi, C.G. 2008. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. Journal of the American Ceramic Society, 91, 576–583.
  • [27] Krämer, S., Faulhaber, S., Chambers, M., Clarke, D. R., Levi, C. G., Hutchinson, J. W., Evans, A. G. 2008. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering A, 490, 26–35.
  • [28] Li, L., Hitchman, N., Knapp, J. 2010. Failure of thermal barrier coatings subjected to CMAS attack. Journal of Thermal Spray Technology, Springer, 148–155.
  • [29] Guo, L., Yan, Z., Yu, Y. Yang, J., Li, M. 2019. CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250°C–1350°C. Corrosion Science, 154, 111–122.
  • [30] Stott, F. H., De Wet, D. J., Taylor, R. 1994. Degradation of Thermal-Barrier Coatings at Very High Temperatures. MRS Bulletin, 19, 46–49.
  • [31] Ozgurluk, Y., Karaoglanli, A. C., Ahlatci, H. (2021). Comparison of calcium–magnesium-alumina-silicate (CMAS) resistance behavior of produced with electron beam physical vapor deposition (EB-PVD) method YSZ and Gd2Zr2O7/YSZ thermal barrier coatings systems. Vacuum, 110576.
  • [32]Ozgurluk, Y., Doleker, K. M., Ahlatci, H., Karaoglanli, A. C. (2021). Investigation of calcium–magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method. Surface and Coatings Technology, 411, 126969.
  • [33] Schulz, U., Braue, W. 2013. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits. Surface and Coatings Technology, 235, 165–173.
  • [34] Mercer, C. Faulhaber S., Evans, A. G. Darolia, R. A. 2005. delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration. Acta Materialia, 53, 1029–1039.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Aslıhan Atar 0000-0003-0452-674X

Yasin Ozgurluk 0000-0003-1121-5018

Proje Numarası 1919B011803507
Yayımlanma Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 3

Kaynak Göster

APA Atar, A., & Ozgurluk, Y. (2021). NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları ile Korozyon Davranışlarının İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 610-617. https://doi.org/10.19113/sdufenbed.888782
AMA Atar A, Ozgurluk Y. NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları ile Korozyon Davranışlarının İncelenmesi. SDÜ Fen Bil Enst Der. Aralık 2021;25(3):610-617. doi:10.19113/sdufenbed.888782
Chicago Atar, Aslıhan, ve Yasin Ozgurluk. “NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları Ile Korozyon Davranışlarının İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, sy. 3 (Aralık 2021): 610-17. https://doi.org/10.19113/sdufenbed.888782.
EndNote Atar A, Ozgurluk Y (01 Aralık 2021) NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları ile Korozyon Davranışlarının İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 3 610–617.
IEEE A. Atar ve Y. Ozgurluk, “NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları ile Korozyon Davranışlarının İncelenmesi”, SDÜ Fen Bil Enst Der, c. 25, sy. 3, ss. 610–617, 2021, doi: 10.19113/sdufenbed.888782.
ISNAD Atar, Aslıhan - Ozgurluk, Yasin. “NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları Ile Korozyon Davranışlarının İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/3 (Aralık 2021), 610-617. https://doi.org/10.19113/sdufenbed.888782.
JAMA Atar A, Ozgurluk Y. NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları ile Korozyon Davranışlarının İncelenmesi. SDÜ Fen Bil Enst Der. 2021;25:610–617.
MLA Atar, Aslıhan ve Yasin Ozgurluk. “NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları Ile Korozyon Davranışlarının İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 25, sy. 3, 2021, ss. 610-7, doi:10.19113/sdufenbed.888782.
Vancouver Atar A, Ozgurluk Y. NiCr Bağ Kaplamaya Sahip Termal Bariyer Kaplama (TBC) Sisteminin Mekanik Alaşımlama Yöntemi Kullanılarak Üretilen CaO-MgO-Al2O3-SiO2 (CMAS) Tozları ile Korozyon Davranışlarının İncelenmesi. SDÜ Fen Bil Enst Der. 2021;25(3):610-7.

e-ISSN: 1308-6529